設(shè)函數(shù)(x∈R).若對(duì)于任意.都有≥0 成立.則實(shí)數(shù)= . 查看更多

 

題目列表(包括答案和解析)

14、設(shè)函數(shù)f(x),g(x)的定義域分別為Df,Dg,且Df,DE.若對(duì)于任意x∈Df,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在Dg上的一個(gè)延拓函數(shù).設(shè)f(x)=2x(x≤0),g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是偶函數(shù),則g(x)=
2-|x|

查看答案和解析>>

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問(wèn)題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
 

(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫(xiě)出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
 

查看答案和解析>>

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).定義:(1)f(x)的導(dǎo)數(shù)f′(x)(也叫f(x)一階導(dǎo)數(shù))的導(dǎo)數(shù),f″(x)為f(x)的二階導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0) )為函數(shù)y=f(x)的“拐點(diǎn)”;定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
(1)己知f(x)=x3-3x2+2x+2,求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo);
(2)檢驗(yàn)(1)中的函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱;
(3)對(duì)于任意的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)寫(xiě)出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明).

查看答案和解析>>

對(duì)于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對(duì)于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對(duì)數(shù)的底,a∈R為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說(shuō)明理由.

查看答案和解析>>

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對(duì)任意x1∈[a,b],都有f(x1)=c,且對(duì)任意x2∈D,當(dāng)x2∉[a,b]時(shí),f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說(shuō)明理由;
(Ⅱ)設(shè)f(x)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的取值范圍;
(Ⅲ)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案