題目列表(包括答案和解析)
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。
|
解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)且x<y時(shí),證明F(x,y)>F(y,x).
設(shè),求下列各式的值:
(Ⅰ) ; (Ⅱ); (Ⅲ).
【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用。第一問(wèn)中利用賦值的思想,令x=0,得到
第二問(wèn)中,利用令x=1,得到
第三問(wèn)中,利用令x=1/2,得到
解:(1)令x=0,得到;
(2)令x=1,得到
(3)令x=1/2,得到
在中,已知 ,面積,
(1)求的三邊的長(zhǎng);
(2)設(shè)是(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是
①寫(xiě)出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出的取值范圍.
【解析】第一問(wèn)中利用設(shè)中角所對(duì)邊分別為
由得
又由得即
又由得即
又 又得
即的三邊長(zhǎng)
第二問(wèn)中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com