知, 查看更多

 

題目列表(包括答案和解析)

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F(xiàn)為棱BB的中點,M為線段AC的中點.設
AB
=
e1
,
AD
=
e2
AA1
=
e3
.試用向量法解下列問題:
(1)求證:直線MF∥平面ABCD;
(2)求證:直線MF⊥面A1ACC1;
(3)是否存在a,使平面AFC1與平面ABCD所成二面角的平面角是30°?如果存在,求出相應的a 值,如果不存在,請說明理由.(提示:可設出兩面的交線)

查看答案和解析>>

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五點法”作出函數(shù)y=f(x)在長度為一個周期的閉區(qū)間的圖象.
②求函數(shù)f(x)的最小正周期和單調增區(qū)間;
③求函數(shù)f(x)的最大值,并求出取得最大值時自變量x的取值集合
④函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經過怎樣的變換得到?
⑤當x∈[0,π],求函數(shù)y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作圖
精英家教網(wǎng)

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.        ①

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當,

從而

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

 

查看答案和解析>>

已知函數(shù),數(shù)列的項滿足: ,(1)試求

(2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.

【解析】第一問中,利用遞推關系,

,   

第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(數(shù)學歸納法證明)i) ,  ,命題成立

ii) 假設時,成立

時,

                              

綜合i),ii) : 成立

 

查看答案和解析>>

已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.

【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。

先反設,然后推理論證,最后退出矛盾。證明:假設三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。

證明:假設三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由題意a、b、c互不相等,∴①式不能成立.

∴假設不成立,即三個方程中至少有一個方程有兩個相異實根.

 

查看答案和解析>>


同步練習冊答案