令得或-8分 由(1)知 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;

(2)比較大小,并寫出比較過程;

(3)若,求a的值.

【解析】本試題主要考查了指數(shù)函數(shù)的性質的運用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點,所以,解得,因為,所以.

(2)問中,對底數(shù)a進行分類討論,利用單調性求解得到。

(3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .

解:⑴∵函數(shù)的圖象經(jīng)過,即.        … 2分

,所以.             ………… 4分

⑵當時,;

時,. ……………… 6分

因為,

時,上為增函數(shù),∵,∴.

.當時,上為減函數(shù),

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

設函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網(wǎng)Z,X,X,K]

【解析】第一問解:因為f(x)=lnx,gx)=ax+

則其導數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnx,gx)=ax+

則其導數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關系是,結合,解得。

(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知向量,且,A為銳角,求:

(1)角A的大;

(2)求函數(shù)的單調遞增區(qū)間和值域.

【解析】第一問中利用,解得   又A為銳角                 

      

第二問中,

 解得單調遞增區(qū)間為

解:(1)        ……………………3分

   又A為銳角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得單調遞增區(qū)間為

                                                  ……………………10分

 

 

查看答案和解析>>

某制造商制造并出售球形瓶裝的某種飲料,瓶子的制造成本與瓶子的半徑r的平方成正比,且r=1cm時,制造成本為0.8π分.已知每出售1ml的飲料,制造商可獲利0.2分,且制造商制作的瓶子的最大半徑為6cm,設每瓶飲料的利潤為y分,(半徑r的單位是cm).
(1)寫出出售每瓶飲料可得利潤的關系式;
(2)求制造商制造并出售100瓶該飲料所獲得的最大利潤(結果用含π的式子表示).

查看答案和解析>>


同步練習冊答案