所以解得,綜上,所求k的范圍為--------14分 查看更多

 

題目列表(包括答案和解析)

已知不等式kx2-2x+6k<0(k≠0),

(1)如果不等式的解集是{x|x<-3或x>-2},求k的值;

(2)如果不等式的解集是R,求k的范圍.

查看答案和解析>>

二次函數(shù)y=f(x)的圖象的一部分如圖所示.
(Ⅰ)根據(jù)圖象寫出f(x)在區(qū)間[-1,4]上的值域;
(Ⅱ)根據(jù)圖象求y=f(x)的解析式;
(Ⅲ)試求k的范圍,使方程f(x)-k=0在(-1,4]上的解集恰為兩個元素的集合.

查看答案和解析>>

已知數(shù)列是首項為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項公式;

(2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

此時也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當時,;

(ii) 當時,,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則,

則(i)當時,

,

 

查看答案和解析>>

求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>

(2011•樂山一模)已知
a
=(
1
k
,2),
b
=(-1,
1
x
),f(x)=
a
b
(其中k為非零常數(shù)).
(1)解關(guān)于x的不等式f(x)>0;
(2)若f(x)+2x≥0在(0,+∞)上恒成立,求k的范圍.

查看答案和解析>>


同步練習冊答案