① -1≤a≤1.∵對(duì)x∈[-1.1].f(x)是連續(xù)函數(shù).且只有當(dāng)a=1時(shí). 查看更多

 

題目列表(包括答案和解析)

f(x)=
ax2+1
-bx
x≥0
cexx<0
其中a>0
(1)若f(x)在R上連續(xù),求c
(2)若要使
lim
x→+∞
f(x)=0
,則a與b應(yīng)滿(mǎn)足哪些條件?
(3)若對(duì)于任意的a∈[2,3],f(x)是[0,+∞)的單調(diào)減函數(shù),求b的范圍.

查看答案和解析>>

附加題:
連續(xù)函數(shù)f(x)滿(mǎn)足:對(duì)于任何x、y∈R,都有f(x+y)=f(x)?f(y)成立,且f(x)不是常數(shù)函數(shù).
(Ⅰ)求證:對(duì)于任意x∈R,都有f(x)>0;
(Ⅱ)求證:對(duì)于任意x∈Q,都有f(x)=[f(1)]x;
(Ⅲ)設(shè)f(1)=a,求證:對(duì)于任意x∈R,都有f(x)=ax

查看答案和解析>>

“我們稱(chēng)使f(x)=0的x為函數(shù)yf(x)的零點(diǎn).若函數(shù)yf(x)在區(qū)間[a,b]上是連續(xù)的、單調(diào)的函數(shù),且滿(mǎn)足f(af(b)<0,則函數(shù)yf(x)在區(qū)間[a,b]上有唯一的零點(diǎn)”.對(duì)于函數(shù)f(x)=6ln(x+1)-x2+2x-1.

(1)討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性,并求出函數(shù)極值;

(2)證明連續(xù)函數(shù)f(x)在[2,+∞)內(nèi)只有一個(gè)零點(diǎn).

查看答案和解析>>

已知函數(shù)f(x)的圖象是連續(xù)不斷的曲線(xiàn),有如下的x與f(x)的對(duì)應(yīng)值表

X

 

1

2

3

4

5

6

7

f(x)

132.1

15.4

-2.31

8.72

 

-6.31

-125.1

12.6

那么,函數(shù)f(x)在區(qū)間[1,6]上的零點(diǎn)至少有(  )

A.5個(gè)          B.4個(gè)

C.3個(gè)                    D.2個(gè)

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線(xiàn)AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線(xiàn),所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案