② g(1)=m2+m-2≥0.對(duì)任意a∈A及t∈[-1.1]恒成立.其取值范圍是{m|m≥2.或m≤-2}.方法二:當(dāng)m=0時(shí).②顯然不成立,當(dāng)m≠0時(shí). 查看更多

 

題目列表(包括答案和解析)

已知偶函數(shù)f(x)對(duì)任意的x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2-2,

(1)求f(0),f(1)的值及f(x)的表達(dá)式;

(2)設(shè)函數(shù)g(x)=(x∈R),若函數(shù)g(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的值組成的集合A;

(3)在(2)的條件下,設(shè)關(guān)于x的方程g(x)=的兩個(gè)非零實(shí)根為x1,x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(A類(lèi))定義在R上的函數(shù)y=f(x),對(duì)任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類(lèi))已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對(duì)定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對(duì)定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

(A類(lèi))定義在R上的函數(shù)y=f(x),對(duì)任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類(lèi))已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對(duì)定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對(duì)定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>


同步練習(xí)冊(cè)答案