解:Ⅰ當(dāng)時.設(shè). 查看更多

 

題目列表(包括答案和解析)

某地今年年初有居民住房面積為am2,其中需要拆除的舊房面積占了一半,當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%的住房增長率建設(shè)新住房,同時每年拆除xm2的舊住房,又知該地區(qū)人口年增長率為4.9‰.

(1)如果10年后該地的人均住房面積正好比目前翻一番,那么每年應(yīng)拆除的舊住房面積x是多少?

(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的舊住房?

下列數(shù)據(jù)供計算時參考:

查看答案和解析>>

解答題

設(shè)函數(shù)y=f(x)=x(x-a)(x-b)(a、b∈R)

(1)

若a≠b,ab≠0,過兩點(diǎn)(0,0)、(,0)的中點(diǎn)作與軸垂直的直線,與函數(shù)y=f(x)的圖象交于點(diǎn)P(x0,f(x0)),求證:函數(shù)y=f(x)在點(diǎn)P處的切線點(diǎn)為(b,0).

(2)

若a=b(a≠0)),且當(dāng)x∈[0,|a|+1]時f(x)<2a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

假設(shè)一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點(diǎn)圖,則這些點(diǎn)將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:
年齡/周歲
3
4
5
6
7
8
9
身高/cm
90.8
97.6
104.2
110.9
115.6
122.0
128.5
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.6
173.0
(1)作出這些數(shù)據(jù)的散點(diǎn)圖;
(2)求出這些數(shù)據(jù)的回歸方程;
(3)對于這個例子,你如何解釋回歸系數(shù)的含義?
(4)用下一年的身高減去當(dāng)年的身高,計算他每年身高的增長數(shù),并計算他從3~16歲身高的年均增長數(shù).
(5)解釋一下回歸系數(shù)與每年平均增長的身高之間的聯(lián)系.

查看答案和解析>>

已知,設(shè)是方程的兩個根,不等式對任意實(shí)數(shù)恒成立;函數(shù)有兩個不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

定義:,設(shè)(x∈R,k為正整數(shù))
(1)分別求出當(dāng)k=1,k=2時方程f(x)=0的解
(2)設(shè)f(x)≤0的解集為[a2k-1,a2k],求a1+a2+a3+a4的值及數(shù)列{an}的前2n項(xiàng)和
(3)對于(2)中的數(shù)列{an},設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn的最大值.

查看答案和解析>>


同步練習(xí)冊答案