題目列表(包括答案和解析)
3x-2 |
x-1 |
π |
3 |
π |
12 |
3x-2 |
x-1 |
π |
3 |
π |
12 |
已知定義在上的不恒為零的函數(shù),且對于任意實數(shù),滿足,,考察下列結(jié)論:①;②為偶函數(shù);③為等比數(shù)列;④為等差數(shù)列;其中正確命題的序號為____________.
已知是定義在上的不恒為零的函數(shù),且對任意滿足下列關(guān)系式:
,,,
考察下列結(jié)論:①; ②為偶函數(shù); ③數(shù)列為等比數(shù)列;
④數(shù)列為等差數(shù)列。其中正確的結(jié)論是:_____ __。(將所有正確命題的序號都填上)
一、選擇題:(本題每小題5分,共50分)
1
2
3
4
5
6
7
8
9
10
D
B
C
D
D
C
B
A
A
C
二、填空題:(本題每小題4分,共16分)
11. 12. 13. 14.
三、解答題(本大題6小題,共84分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
15.(本小題滿分14分)
解得…………………4分
又
∵+1> 得B={y|y<或y>+1}……………………8分
∵A∩B=φ
∴ 1
+19…………………12分
∴-2…………………14分
16.(本小題滿分14分)
解:(1),
由得 又 ………6分
(2)因
………8分
又,,則
即…………………10分
…14分
17.(本小題滿分14分)
解: (…………………3分)
=(…………………7分)
又,,
(1)若,即時,==,(…………10分)
(2)若,即時,
所以當(dāng)即時,=(…………………13分)
(…………………14分)
18.(本小題滿分14分)
解:(1)令,,即
由
∵,∴,即數(shù)列是以為首項、為公差的等差數(shù)列, ∴ …………8分
(2)化簡得,即
∵,又∵時,…………12分
∴各項中最大項的值為…………14分
19.(本小題滿分14分)
解:(1),由題意―――①
又―――②
聯(lián)立得 …………5分
(2)依題意得 即 ,對恒成立,設(shè),則
解得
當(dāng) ……10分
則
又,所以;故只須 …………12分
解得
即的取值范圍是 …………14分
20.(本小題滿分14分)
解:(1)由,
即函數(shù)的圖象交于不同的兩點A,B; ……4分(2)
已知函數(shù),的對稱軸為,
故在[2,3]上為增函數(shù), ……………6分
……8分
(3)設(shè)方程
……10分
……12分
設(shè)的對稱軸為上是減函數(shù), ……14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com