16.. 查看更多

 

題目列表(包括答案和解析)

.(本小題滿(mǎn)分14分)
已知函數(shù)
(1)當(dāng)a=1時(shí),求的極小值;
(2)設(shè),x∈[-1,1],求的最大值F(a).

查看答案和解析>>

.(本小題滿(mǎn)分14分)
設(shè)函數(shù).
,求的最小值;
若當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

.(本小題滿(mǎn)分14分)已知定義在上的奇函數(shù)滿(mǎn)足,且對(duì)任意
(Ⅰ)判斷上的奇偶性,并加以證明.
(Ⅱ)令,,求數(shù)列的通項(xiàng)公式.
(Ⅲ)設(shè)的前項(xiàng)和,若對(duì)恒成立,求的最大值.

查看答案和解析>>

.(本小題滿(mǎn)分14分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程 的兩實(shí)根,且,記數(shù)列的前項(xiàng)和為.
(1)求;
(2)求證:數(shù)列是等比數(shù)列;
(3)設(shè),問(wèn)是否存在常數(shù),使得對(duì)都成立,若存在,
求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

.(本小題滿(mǎn)分14分)
已知單調(diào)遞增的等比數(shù)列滿(mǎn)足:;
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前n項(xiàng)和為,求成立的正整數(shù) n的最小值.

查看答案和解析>>

一、選擇題:(本題每小題5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空題:(本題每小題4分,共16分)

11.      12.     13.    14.

三、解答題(本大題6小題,共84分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)

15.(本小題滿(mǎn)分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小題滿(mǎn)分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,,則

…………………10分

…14分

 

 

17.(本小題滿(mǎn)分14分)

解:                            (…………………3分)

=(…………………7分)

,,

(1)若,即時(shí),==,(…………10分)

(2)若,即時(shí),

所以當(dāng)時(shí),=(…………………13分)

(…………………14分)

18.(本小題滿(mǎn)分14分)

解:(1)令,,即

 由

  ∵,∴,即數(shù)列是以為首項(xiàng)、為公差的等差數(shù)列, ∴  …………8分

(2)化簡(jiǎn)得,即

 ∵,又∵時(shí),…………12分

 ∴各項(xiàng)中最大項(xiàng)的值為…………14分

19.(本小題滿(mǎn)分14分)

解:(1),由題意―――①

       又―――②

       聯(lián)立得                       …………5分

(2)依題意得   即 ,對(duì)恒成立,設(shè),則

      解

      當(dāng)   ……10分

      則

      又,所以;故只須   …………12分

      解得

      即的取值范圍是       …………14分

20.(本小題滿(mǎn)分14分)

解:(1)由

    即函數(shù)的圖象交于不同的兩點(diǎn)A,B;                                               ……4分(2)

已知函數(shù),的對(duì)稱(chēng)軸為

在[2,3]上為增函數(shù),                          ……………6分

                      ……8分

(3)設(shè)方程

                                 ……10分

                                ……12分

設(shè)的對(duì)稱(chēng)軸為上是減函數(shù),      ……14分

 


同步練習(xí)冊(cè)答案