③,④其中正確結(jié)論的個數(shù)是---( ) ( )A.1 B.2 C.3 D.4 查看更多

 

題目列表(包括答案和解析)

給出下列三個結(jié)論:其中正確結(jié)論的個數(shù)為(  )
①命題“若m>0,則函數(shù)f(x)=x2+x-m有零點(diǎn)”的逆否命題為:“函數(shù)f(x)=x2+x-m無零點(diǎn),則m≤0”;
②“p∧q“為真是“p∨q“為真的充分不必要條件;
③若命題P:?x∈R,f(x)<m,則命題的否定?P:?x∈R,使得f(x)≥m.

查看答案和解析>>

給出下列結(jié)論:
(1)回歸分析是對具有相關(guān)關(guān)系的兩個變量進(jìn)行統(tǒng)計分析的一種常用方法;
(2)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;(其中R2=1-
n
i=1
(yi-
yi
)
2
n
i=1
(yi-
.
y
)
2

(3)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,正確的有( 。﹤.

查看答案和解析>>

下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為______.

查看答案和解析>>

給出下列結(jié)論:
(1)回歸分析是對具有相關(guān)關(guān)系的兩個變量進(jìn)行統(tǒng)計分析的一種常用方法;
(2)在回歸分析中,可用指數(shù)系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;(其中
(3)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(4)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,正確的有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則¬p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為   

查看答案和解析>>

一、選擇題:本大題共10個小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空題:本大題共4個小題,每小題4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答題:本大題共6個小題,每小題14分,共84分.

15.(4分)     

由題意得  

16. 有分布列:

0

1

2

3

P

從而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)設(shè)BB1的中點(diǎn)為F,連接EF、DF,則EF是DF在平面BB1C1C上的射影。

     因為BB1C1C是正方形,

   

18.(1) 由題意得  

(2)

所以直線的斜率為

,則直線的斜率,                                       

19.(1)由韋達(dá)定理得

是首項為4,公差為2的等差數(shù)列。

(2)由(1)知,則

原式左邊=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x則

故(1)得證。

。2)在R上任取x1,x2,且

 

所以在R上單調(diào)遞增;

。3)

;

;因為,

所以無解,即圓心到直線的距離大于或等于半徑2,只需

 

 


同步練習(xí)冊答案