題目列表(包括答案和解析)
已知定義在R上的單調(diào)遞增函數(shù)滿足,且。
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:;
(Ⅲ)設(shè)集合,.,若集合有且僅有一個(gè)元素,求證: 。
已知定義在R上的單調(diào)遞增函數(shù)滿足,且。
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:;
(Ⅲ)設(shè)集合,.,若集合有且僅有一個(gè)元素,求證: 。
已知函數(shù)f(x)=x3-ax-1.
(1)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說明理由;
(3)證明:f(x)=x3-ax-1的圖象不可能總在直線y=a的上方.
一、選擇題:本大題共10個(gè)小題,每小題5分,共50分.
題號
1
2
3
4
5
6
7
8
9
10
答案
C
B
C
D
C
B
A
D
B
A
二、填空題:本大題共4個(gè)小題,每小題4分,共16分.
11. 630 12. 2k 13. 14. ①②③
三、解答題:本大題共6個(gè)小題,每小題14分,共84分.
15.(4分)
由題意得
16. 有分布列:
0
1
2
3
P
從而期望
17.(1)
又
(2)
(3)DE//AB,
(4)設(shè)BB1的中點(diǎn)為F,連接EF、DF,則EF是DF在平面BB
因?yàn)锽B
18.(1) 由題意得
(2)
所以直線的斜率為
令,則直線的斜率,
19.(1)由韋達(dá)定理得
是首項(xiàng)為4,公差為2的等差數(shù)列。
(2)由(1)知,則
原式左邊=
==右式。故原式成立。
20.令x=y=0,有,令y=-x則得
故(1)得證。
。2)在R上任取x1,x2且,且,
所以在R上單調(diào)遞增;
(3)
由得;
由得;因?yàn)?sub>,
所以無解,即圓心到直線的距離大于或等于半徑2,只需
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com