解:(Ⅰ)本小題只要能建立一個正確的數學模型即可給分(例如根據兩點得出直線方程等).下面利用excel給出幾個模型.供參考:(1)直線型: 查看更多

 

題目列表(包括答案和解析)

(2006•黃浦區(qū)二模)設a為正數,直角坐標平面內的點集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標系中,規(guī)定a∈Z,且y∈Z時,(x,y)稱為格點,當a=8時,A內有幾個格點(本小題只要直接寫出結果即可);
(3)點集A連同它的邊界構成的區(qū)域記為
.
A
,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
.
A
(r>0)
,求r的最大值.

查看答案和解析>>

設a為正數,直角坐標平面內的點集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標系中,規(guī)定a∈Z,且y∈Z時,(x,y)稱為格點,當a=8時,A內有幾個格點(本小題只要直接寫出結果即可);
(3)點集A連同它的邊界構成的區(qū)域記為數學公式,若圓數學公式,求r的最大值.

查看答案和解析>>

設a為正數,直角坐標平面內的點集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標系中,規(guī)定a∈Z,且y∈Z時,(x,y)稱為格點,當a=8時,A內有幾個格點(本小題只要直接寫出結果即可);
(3)點集A連同它的邊界構成的區(qū)域記為,若圓,求r的最大值.

查看答案和解析>>

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

(2)當時,若,

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取;;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

精英家教網A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內切于點A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數)的右焦點,且與直線
x=4-2t
y=3-t
(t為參數)平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>


同步練習冊答案