∴動點P的軌跡方程x+ y =4╈╈╈╈╈╈╈╈╈╈+5分 查看更多

 

題目列表(包括答案和解析)

已知平面內(nèi)兩定點F1(0,-
5
)、F2(0,
5
)
,動點P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點P的軌跡是曲線E,O為坐標原點.
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點的橫坐標,求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

已知平面內(nèi)兩定點F1(0,-
5
)、F2(0,
5
)
,動點P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點P的軌跡是曲線E,O為坐標原點.
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點的橫坐標,求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)若軌跡C與圓M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四個點,求r的取值范圍;
(3)已知點B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

已知M是x軸上一動點,一條直線經(jīng)過點A(2,1)并且垂直于AM交y軸于N,過點M、N分別作兩坐標軸的垂線,設(shè)它們的交點為P(x,y),則點P的軌跡方程是(    )

A.2x-y-3=0          B.2x+y-5=0          C.x-2y=0             D.x+2y-4=0

查看答案和解析>>

已知M是x軸上的一動點, 一條直線經(jīng)過點A(2, 1), 并且垂直于AM交y軸于N. 過點M、N分別作兩坐標軸的垂線, 設(shè)它們的交點為P(x, y), 則點P的軌跡方程是

[  ]

           

A.2x-y-3=0 

 B.2x+y-5=0

C.x-2y=0 

 D.x+2y-4=0

查看答案和解析>>


同步練習冊答案