即在內(nèi)是增函數(shù), 在內(nèi)是減函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)當時,,,

,則,令為單調(diào)遞增區(qū)間,為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點,所以

【考點定位】此題應(yīng)該說是導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問題都是課本中要求的重點內(nèi)容,也是學生掌握比較好的知識點,在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點,比較重要

 

查看答案和解析>>

根據(jù)定義討論(或證明)函數(shù)增減性的一般步驟是:

(1)設(shè)x1、x2是給定區(qū)間內(nèi)的任意兩個值且x1<x2

(2)作差f(x1)-f(x2),并將此差化簡、變形;

(3)判斷f(x1)-f(x2)的正負,從而證得函數(shù)的增減性.

利用函數(shù)的單調(diào)性可以把函數(shù)值的大小比較的問題轉(zhuǎn)化為自變量的大小比較的問題.

函數(shù)的單調(diào)性只能在函數(shù)的定義域內(nèi)來討論.這即是說,函數(shù)的單調(diào)區(qū)間是其定義域的________.

查看答案和解析>>

某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內(nèi),產(chǎn)量減少3件.如果在規(guī)定的時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件.
( I)請寫出相同時間內(nèi)產(chǎn)品的總利潤y與檔次x之間的函數(shù)關(guān)系式,并寫出x的定義域.
( II)在同樣的時間內(nèi),生產(chǎn)哪一檔次產(chǎn)品的總利潤最大?并求出最大利潤.

查看答案和解析>>

(本小題滿分12分)某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內(nèi),產(chǎn)量減少3件。如果在規(guī)定的時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件

(I)請寫出相同時間內(nèi)產(chǎn)品的總利潤與檔次之間的函數(shù)關(guān)系式,并寫出的定義域

(II)在同樣的時間內(nèi),生產(chǎn)哪一檔次產(chǎn)品的總利潤最大?并求出最大利潤.

 

查看答案和解析>>


同步練習冊答案