21.在平面直角坐標(biāo)系的距離之比為.設(shè)動點P的軌跡為C. (I)寫出C的方程, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系的距離之比為.設(shè)動點P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線的值.
(3)若點A在第一象限,證明:當(dāng)

查看答案和解析>>

在直角坐標(biāo)系xOy中,動點P與定點F(1,0)的距離和它到定直線x=2的距離之比是,設(shè)動點P的軌跡為C1,Q是動圓(1<r<2)上一點.
(1)求動點P的軌跡C1的方程,并說明軌跡是什么圖形;
(2)設(shè)曲線C1上的三點與點F的距離成等差數(shù)列,若線段AC的垂直平分線與x軸的交點為T,求直線BT的斜率k;
(3)若直線PQ與C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

在直角坐標(biāo)系xOy中,動點P與定點F(1,0)的距離和它到定直線x=2的距離之比是,設(shè)動點P的軌跡為C1,Q是動圓(1<r<2)上一點.
(1)求動點P的軌跡C1的方程,并說明軌跡是什么圖形;
(2)設(shè)曲線C1上的三點與點F的距離成等差數(shù)列,若線段AC的垂直平分線與x軸的交點為T,求直線BT的斜率k;
(3)若直線PQ與C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

已知平面內(nèi)動點P(x,y)到定點F(1,0)的距離與其到定直線l:x=4的距離之比是,設(shè)動點P的軌跡為M,軌跡M與x軸的負(fù)半軸交于點A,過點F的直線交軌跡M于B、C兩點.
(1)求軌跡M的方程;
(2)證明:當(dāng)且僅當(dāng)直線BC垂直于x軸時,△ABC是以BC為底邊的等腰三角形;
(3)△ABC的面積是否存在最值?如果存在,求出最值;如果不存在,說明理由.

查看答案和解析>>

(12分)已知動點P到兩定點距離之比為。

⑴求動點P軌跡C的方程;

⑵若過點N的直線被曲線C截得的弦長為,求直線的方程。

 

 

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個選項中,只有一項是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設(shè)通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人。…………4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

    <dfn id="6ghtz"><strike id="6ghtz"></strike></dfn>
    <nav id="6ghtz"><font id="6ghtz"><ins id="6ghtz"></ins></font></nav><ol id="6ghtz"><span id="6ghtz"></span></ol>
    1.    (I),

             AD為PD在平面ABC內(nèi)的射影。

             又點E、F分別為AB、AC的中點,

            

             在中,由于AB=AC,故

             ,平面PAD……4分

         (II)設(shè)EF與AD相交于點G,連接PG。

             平面PAD,dm PAD,交線為PG,

             過A做AO平面PEF,則O在PG上,

             所以線段AO的長為點A到平面PEF的距離

             在

            

             即點A到平面PEF的距離為…………8分

             說 明:該問還可以用等體積轉(zhuǎn)化法求解,請根據(jù)解答給分。

         (III)

             平面PAC。

             過A做,垂足為H,連接EH。

             則

             所以為二面角E―PF―A的一個平面角。

             在

            

             即二面角E―PF―A的正切值為

             …………12分

             解法二:

            

      AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標(biāo)系,

             則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

    2.        且

            

            

             平面PAD

         (II)為平面PEF的一個法向量,

             則

             令…………6分

             故點A到平面PEF的距離為:

            

             所以點A到平面PEF的距離為…………8分

         (III)依題意為平面PAF的一個法向量,

             設(shè)二面角E―PF―A的大小為(由圖知為銳角)

             則,…………10分

             即二面角E―PF―A的大小…………12分

      20.解:(I)依題意有:  ①

             所以當(dāng)  ②……2分

             ①-②得:化簡得:

            

            

            

             所以數(shù)列是以2為公差的等差數(shù)列。…………4分

             故…………5分

             設(shè)

             是公比為64的等比數(shù)列

            

             …………8分

         (II)……9分

             …………10分

             …………11分

             …………12分

      21.解:(I)設(shè),則依題意有:

            

             故曲線C的方程為…………4分

             注:若直接用

             得出,給2分。

         (II)設(shè),其坐標(biāo)滿足

            

             消去…………※

             故…………5分

            

             而

            

             化簡整理得…………7分

             解得:時方程※的△>0

            

         (III)

            

            

            

             因為A在第一象限,故

             由

             故

             即在題設(shè)條件下,恒有…………12分

      22.解:(I)…………3分

             處的切線互相平行

             …………5分

            

             …………6分

         (II)

            

             令

            

            

             當(dāng)

             是單調(diào)增函數(shù)。…………9分

            

            

            

             恒成立,

             …………10分

             值滿足下列不等式組

              ①,或

             不等式組①的解集為空集,解不等式組②得

             綜上所述,滿足條件的…………12分

       

       

       

       


      同步練習(xí)冊答案