題目列表(包括答案和解析)
A.1 B. C. D.2
A.[2,+∞) B.(2,+∞) C.[4,+∞) D.(4,+∞)
已知是定義在R上的奇函數(shù),則下列函數(shù)中為奇函數(shù)的序號(hào)是
①;②;③;④.
A.①③ B.②③ C.①④ D.②④
A.p B.p或q C.p且q D.非q
已知命題p:3≥3,q:3>4,則下列判斷正確的是( )
A.pq為真,pq為真,p為假
B.pq為真,pq為假,p為真
C.pq為假,pq為假,p為假
D.pq為真,pq為假,p為假
一、選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.共10小題,每小題5分,
滿(mǎn)分50分.
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
B
A
B
C
B
D
A
D
D
C
二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算. 本大題共5小題,每小
題5分,滿(mǎn)分20分.其中14~15題為選做題,考生只能選做一題. 第十二題的第一個(gè)空2分,第二個(gè)空3分.
11. ; 12. 1, 2n-1; 13. 80; 14.; 15.1.
三、解答題:本大題共6小題,共80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.
16.(本小題滿(mǎn)分12分)
某校高三年級(jí)要從3名男生a、b、c和2名女生d、e中任選3名代表參加
學(xué)校的演講比賽.
(1)求男生a被選中的概率; (2) 求男生a和女生d至少一人被選中的概率.
解:從3名男生a、b、c和2名女生d、e中任選3名代表選法是:
a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e;b,c,d;
b,c,e;b,d,e;c,d,e共10種. ……4分
(1)男生a被選中的選法是:a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e,共6種,于是男生a被選中的概率為. ……8分
(2) 男生a和女生d至少一人被選中的選法是:a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e;b,c,d;b,d,e;c,d,e共9種,
故男生a和女生d至少一人被選中的概率為. ……12分
17.(本小題滿(mǎn)分14分)
已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,且a=2, cosB=.
(1)若b=4,求sinA的值; (2) 若△ABC的面積S△ABC=4,求b,c的值.
解:(1) ∵cosB=>0,且0<B<π,
∴sinB=. ……2分
由正弦定理得, ……4分
. ……6分
(2) ∵S△ABC=acsinB=4, ……8分
∴, ∴c=5. ……10分
由余弦定理得b2=a2+c2-2accosB,
∴.……14分
18.(本小題滿(mǎn)分14分) 如圖4,A1A是圓柱的母線(xiàn),AB是圓柱底面圓的直徑, C是底面圓周上異于A(yíng),B的任意一點(diǎn),A1A= AB=2.
(1)求證: BC⊥平面A1AC;
(2)求三棱錐A1-ABC的體積的最大值.
證明:∵C是底面圓周上異于A(yíng),B的任意一點(diǎn),
且AB是圓柱底面圓的直徑,
∴BC⊥AC, ……2分
∵AA1⊥平面ABC,BCÌ平面ABC,
∴AA1⊥BC, ……4分
∵AA1∩AC=A,AA1Ì平面AA1 C,
ACÌ平面AA
∴BC⊥平面AA1C. ……6分
(2)解法1:設(shè)AC=x,在Rt△ABC中,
(0<x<2) , ……7分
故(0<x<2),
……9分
即. ……11分
∵0<x<2,0<x2<4,∴當(dāng)x2=2,即時(shí),
三棱錐A1-ABC的體積的最大值為. ……14分
解法2: 在Rt△ABC中,AC2+BC2=AB2=4, ……7分
……9分
. ……11分
當(dāng)且僅當(dāng) AC=BC 時(shí)等號(hào)成立,此時(shí)AC=BC=.
∴三棱錐A1-ABC的體積的最大值為. ……14分
19. (本小題滿(mǎn)分14分)
設(shè)A(x1,x2)、B(x2,y2)是拋物線(xiàn)x2=4y上不同的兩點(diǎn),且該拋物線(xiàn)在點(diǎn)A、B處的兩條切線(xiàn)相交于點(diǎn)C,并且滿(mǎn)足.
(1)求證:x1?x2=-4;
(2)判斷拋物線(xiàn)x2=4y的準(zhǔn)線(xiàn)與經(jīng)過(guò)A、B、C三點(diǎn)的圓的位置關(guān)系,并說(shuō)明理由.
(1) 證明:由x2=4y得,則,
∴拋物線(xiàn)x2=4y在點(diǎn)A(x1,x2)、B(x2,y2)處的切線(xiàn)的斜率分別為,
……2分
∵,∴, ……4分
∴拋物線(xiàn)x2=4y在點(diǎn)A(x1,x2)、B(x2,y2)處兩切線(xiàn)互相垂直,
∴,∴x1?x2=-4. ……6分
(2) 解法1: ∵,∴,
∴經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心為線(xiàn)段AB的中點(diǎn)D,
圓心D, ……8分
∵拋物線(xiàn)x2=4y的準(zhǔn)線(xiàn)方程為y=-1, ∴點(diǎn)D到直線(xiàn)
y=-1的距離為, ……10分
∵經(jīng)過(guò)A、B、C三點(diǎn)的圓的半徑,
由于x12=4y1,x22=4y2,且x1?x2=-4,則,
∴
,
即
, ……12分
∴d=r,∴拋物線(xiàn)x2=4y準(zhǔn)線(xiàn)與經(jīng)過(guò)A、B、C三點(diǎn)的圓相切. ……14分
解法2:由(1)知拋物線(xiàn)x2=4y在點(diǎn)A(x1,x2)處的切線(xiàn)的斜率為
又x12=4y1,∴切線(xiàn)AC所在直線(xiàn)方程為,
即 ① ……8分
同理可得切線(xiàn)BC所在直線(xiàn)方程為 ②
由①,②得點(diǎn)C的橫坐標(biāo),縱坐標(biāo)yC=-1,即
……10分
∵,∴,
∴經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心為線(xiàn)段AB的中點(diǎn)D,
圓心D,
∵拋物線(xiàn)x2=4y的準(zhǔn)線(xiàn)方程為y=-1,
∴點(diǎn)D到直線(xiàn)y=-1的距離為, ……12分
∵經(jīng)過(guò)A、B、C三點(diǎn)的圓的半徑r=|CD|=,
∴d=r,∴拋物線(xiàn)x2=4y準(zhǔn)線(xiàn)與經(jīng)過(guò)A、B、C三點(diǎn)的圓相切. ……14分
20. (本小題滿(mǎn)分12分)
某車(chē)間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)A 型零件和1個(gè)B 型零件配套組成. 每個(gè)工人每小時(shí)能加工5個(gè)A 型零件或者3個(gè)B 型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號(hào)的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*)
(1)設(shè)完成A 型零件加工所需時(shí)間為f(x)小時(shí),寫(xiě)出f(x)的解析式;
(2)為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?
(本題主要考查函數(shù)最值、不等式、導(dǎo)數(shù)及其應(yīng)用等基礎(chǔ)知識(shí),考查分類(lèi)與整合的數(shù)學(xué)思想方法,以及運(yùn)算求解和應(yīng)用意識(shí))
解:(1) 生產(chǎn)150件產(chǎn)品,需加工A型零件450個(gè),則完成A型零件加工所需時(shí)間(x∈N*,且1≤x≤49). ……2分
(2) 生產(chǎn)150件產(chǎn)品,需加工B型零件150個(gè),則完成B型零件加工所需時(shí)間(x∈N*,且1≤x≤49). ……4分設(shè)完成全部生產(chǎn)任務(wù)所需時(shí)間h(x)小時(shí),則h(x)為f(x)與 g(x)的較大者,
令f(x)≥g(x),則,解得,
所以,當(dāng)1≤x≤32時(shí),f(x)>g(x);當(dāng)33≤x≤492時(shí),f(x)<g(x).
故 ……6分
當(dāng)1≤x≤32時(shí),,故h(x)在[1,32]上單調(diào)遞減,
則h(x)在[1,32]上的最小值為(小時(shí)); ……8分
當(dāng)33≤x≤49時(shí),,故h(x)在[33,49]上單調(diào)遞增,
則h(x)在[33,49]上的最小值為(小時(shí)); ……10分
∵h(yuǎn)(33)> h(32),∴h(x)在[1,49]上的最小值為h(32), ∴x=32.
答:為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取32. ……12分
21. (本小題滿(mǎn)分14分)
已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,且a1=1.
(1)求證:數(shù)列{ an-×2n}是等比數(shù)列;
(2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)的和,問(wèn)是否存在常數(shù)λ,使得bn-λSn>0對(duì)任意n∈N*都成立,若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(本題主要考查數(shù)列的通項(xiàng)公式、數(shù)列前n項(xiàng)和、不等式等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化、分類(lèi)與整合、特殊與一般的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力和抽象概括能力)
(1)證法1:∵an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,
∴ ……2分
由an+an+1=2n,得,故數(shù)列
是首項(xiàng)為,公比為-1的等比數(shù)列. ……4分
證法2:∵an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,
∴ ……2分
∵,
故數(shù)列是首項(xiàng)為,公比為-1的等比數(shù)列.
……4分
(2)解:由(1)得,即,
∴
……6分
∴Sn=a1+ a2+ a3+…+ an=[(2+22+23+…+2n)-[(-1)+ (-1)2+…+(-1)n]
, ……8分
要使得bn-λSn>0對(duì)任意n∈N*都成立,
即對(duì)任意n∈N*都成立.
①當(dāng)n為正奇數(shù)時(shí),由(*)式得,
即,
∵2n+1-1>0,∴對(duì)任意正奇數(shù)n都成立.
當(dāng)且僅當(dāng)n=1時(shí),有最小值1,∴λ<1. ……10分
①當(dāng)n為正奇數(shù)時(shí),由(*)式得,
即,
∵2n+1-1>0,∴對(duì)任意正奇數(shù)n都成立.
當(dāng)且僅當(dāng)n=1時(shí),有最小值1,∴λ<1. ……10分
②當(dāng)n為正偶數(shù)時(shí),由(*)式得,
即,
∵2n-1>0,∴對(duì)任意正偶數(shù)n都成立.
當(dāng)且僅當(dāng)n=2時(shí),有最小值1.5,∴λ<1.5. ……12分
綜上所述,存在常數(shù)λ,使得bn-λSn>0對(duì)任意n∈N*都成立,λ的取值范圍是(-∞,1). ……14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com