的條件下,求二面角的平面角的正切值. 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB.點(diǎn)E在棱PA上,.
(1)求異面直線PA與CD所成的角;
(2)點(diǎn)E在棱PA上,且
PE
EA
,當(dāng)λ為何值時(shí),有PC∥平面EBD;
(3)在(2)的條件下求二面角A-BE-D的平面角的余弦值.

查看答案和解析>>

設(shè)x1、x2∈R,常數(shù)a>0,定義運(yùn)算“⊕”:x1⊕x2=(x1+x22,定義運(yùn)算“?”:x1?x2=(x1-x22;對(duì)于兩點(diǎn)A(x1,y1)、B(x2,y2),定義d(AB)=
y1?y2

(1)若x≥0,求動(dòng)點(diǎn)P(x,
(x⊕a)-(x?a)
) 的軌跡C;
(2)已知直線l1 : y=
1
2
x+1
與(1)中軌跡C交于A(x1,y1)、B(x2,y2)兩點(diǎn),若
(x1?x2)+(y1?y2)
=8
15
,試求a的值;
(3)在(2)中條件下,若直線l2不過(guò)原點(diǎn)且與y軸交于點(diǎn)S,與x軸交于點(diǎn)T,并且與(1)中軌跡C交于不同的兩點(diǎn)P、Q,試求
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范圍.

查看答案和解析>>

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓的直線x+2y-1=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m;
(3)在(2)得條件下,求以MN為直徑的圓的方程.

查看答案和解析>>

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
2
,∠CDA=45°,求四棱錐P-ABCD的體積.
(Ⅲ)在滿足(Ⅱ)的條件下求二面角B-PC-D的余弦值的絕對(duì)值.

查看答案和解析>>

如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。

(1)求異面直線AE與A1C所成的角;

(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;

(3)在(2)的條件下,求二面角A1-AG-E的大小(文科求其正切值)。

查看答案和解析>>


同步練習(xí)冊(cè)答案