題目列表(包括答案和解析)
(本小題滿分12分)
已知函數(shù)對(duì)于任意, 總有,
并且當(dāng),
⑴求證為上的單調(diào)遞增函數(shù)
⑵若,求解不等式
已知函數(shù)對(duì)于任意, 總有,
并且當(dāng),
⑴求證為上的單調(diào)遞增函數(shù)
⑵若,求解不等式
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)< 時(shí),求實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較的大小,說(shuō)明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:,依題意得:≥0對(duì)x∈[1,+∞恒成立
∴ax-1≥0對(duì)x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f()=
(3) ∵ ∴
學(xué)校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個(gè)數(shù)的分布列和數(shù)學(xué)期望。
【解析】第一問中,由已知條件結(jié)合n此獨(dú)立重復(fù)試驗(yàn)的概率公式可知,得
第二問中可能的取值為0,1,2,3 ,
,
從而得到分布列和期望值
解:(I)由已知條件得 ,即,則的值為。
(Ⅱ)可能的取值為0,1,2,3 ,
,
的分布列為:(1分)
0 |
1 |
2 |
3 |
|
所以
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com