11.當(dāng)x=14時(shí). 的值為 . 查看更多

 

題目列表(包括答案和解析)

已知代數(shù)式x2axb當(dāng)x=1和x=-3時(shí)的值分別為0和14,求當(dāng)x=3時(shí)代數(shù)式的值.

查看答案和解析>>

若二次函數(shù)的部分對(duì)應(yīng)值如下表:


-7
-6
-5
-4
-3
-2

-27
-13
-3
3
5
3
則當(dāng)=1時(shí),的值為(  )
A.5
B.-3
C.-13
D.-27

查看答案和解析>>

已知yy1y2,y1x 成正比例,y2x 成反比例,并且x=1時(shí)y=4,x=2時(shí)y=5,求當(dāng)x=4時(shí)y 的值.

查看答案和解析>>

如果記y==f(x),并且f(1)表示當(dāng)x=1時(shí)y的值,即f(1)=;f()表示當(dāng)x=時(shí)y的值,即f()=;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()=     

 

查看答案和解析>>

已知變量yx成反比例,并且當(dāng)x=2時(shí),y=-3.

(1)求yx的函數(shù)關(guān)系式;

(2)求當(dāng)y=2時(shí)x的值;

(3)在直角坐標(biāo)系內(nèi)畫出(1)小題中函數(shù)圖象的草圖.

 

查看答案和解析>>

1.C   2.B   3.C   4.C   5.A  6.D  7.C   8.B  9.B  10.B

11.3    12. 360°-36°?n       13.3.98cm     14.210cm,    15. 5   16.y= 2x+2

17.∵(x+5)(x+7)=(x2+12x+35+1-1)=(x+6)2-1<(x+6)2

∴(x+5)(x+7)< (x+6)2

18.(1)圖略                                        ……………………    3分

(2)12個(gè)單位                                        ………………   6分

19.解:連接DE,BF.

∵四邊形ABCD是矩形,

∴AB∥CD.   ∠ODF=∠OBE                    …………   1分

∵EF垂直平分BD,

∴OD=OB

∴ΔDOF≌ΔBOE(ASA)                            ………    2分

∴DF=BE

∴四邊形BFDE是平行四邊形。

∵EF垂直平分BD,

FD=FB(線段的垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等)

∴平行四邊形BFDE是菱形               ………    4分

∴DF=BF=DE=EB,OE=OF.

在RtΔDOF中,DF=+=250

∴S菱形DEBF=BD?EF=DF?BC

Х400х300=250?BC

∴BC=240                           …………   5分

在RtΔBCF中 FC===70

∴CD=DF+FC=250+70=320

∴S梯形ABCD=CD?BC=320×240=76800m2      ……………………..    6分

答略                      ……………     7分

20.解:將圓柱有相對(duì)的A.B垂直切開,并將半圓柱側(cè)面展開成一個(gè)矩形, ………   2分

如圖所示,作BO⊥AO于O,則AO,BO分別平行于矩形的兩邊,作A點(diǎn)關(guān)于D點(diǎn)的對(duì)稱點(diǎn)Aㄆ,連AㄆB,則ΔA`

BO為直角三角形,且BO==12,A`O=(15-3)+4=16, …………    4分

有勾股定理得    

A`B2=A´O2+BO2=162+122=400,

∴A´B=20                                  ………………  7分

故蜘蛛沿B外_壁C內(nèi)_壁A路線爬行最近,

且它至少要走20cm                            ………    8分

 

21.因?yàn)?sub>0.1x+0.01x2,而12,所以0.1x+0.01x2=12,………………   2分

解之,得, 舍去,故<40,

所以甲車未超速行駛。 ………………………………………………     4分

設(shè)=kx,把(60,15)代入,得 15=60k。解得,k=。

=x.          ………………………………………………  6分

由題意知 10<x<12解之得:40<x<48.

所以乙車超速行駛!      8分

22.(1)∵a2=b2+c2-2bccosA=25+49-2?5?7?cos60º= 39

  ∴a=                                      ……………   2分

∵b2=a2+c2-2accosB. 

∴cosB==

∠B≈36º                                         ……………   3分

∴∠C=180º-60º-36º=84º                         ……………    4分

(2).由余弦定理得  72=82+92-2×8×9cosA

得 cosA=

∴∠A≈48º                                               ………… 6分

再得  82=92+72-2×9×7cosB

得 cosB=

∠B≈58º                                      ………………              7分

∴∠C=180º-∠A-∠B=74º                              ………           8分

23.(1).連接BE,可得ΔABE∽ΔADB.               ………………               2分

∴ AB2=AD?AE                               ………………                4分

(2).成立                                     ………………                5分

連接EB,可證ΔAEB∽ΔABD,                     ………………              7分

∴仍可得AB2=AD?AE                               ……………            8分

24.(1)y=60-(x-100)0.02x   (0<x<550)              ………………         4分

(2)根據(jù)題意可列方程為:6000=[60-(x-100)0.02]x-40x

整理可得:x2-3100x+300000=0            ……………….         6分

       (x-500)(x-600)=0                              …………   8分

      x1=500     x2=600(舍去)                      ………………      9分    

銷售商訂購500個(gè)時(shí),該廠可獲利潤6000元。                ……….  10分   

25.(1)S梯形OPFE=(OP+EF)?OE=(25+27)

設(shè)運(yùn)動(dòng)時(shí)間為t秒時(shí),梯形OPFE的面積為y

則y=(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98.         ………………  3分

所以當(dāng)t=7秒時(shí),梯形OPFE的面積最大,最大面積為98;    ……………… 4分

(2)當(dāng)S梯形OPFE=SΔAPF時(shí),

-2t2+28t=,解得t1=8,t2=0(舍去)。                       ……………  7分

當(dāng)t=8秒時(shí),F(xiàn)P=8                                  ………………   8分

(3) 由,                        ………………    10分

且∠OAB=∠OAB,                                     ………   11分

可證得ΔAF1P1∽ΔAF2P2                                            ……  12分

 


同步練習(xí)冊(cè)答案