在銳角∆ABC中.∠A ,∠B,∠C的對邊分別是a,b,c.如圖所示.過C作CD⊥AB,垂足為點D,則cosA=,即AD=bcosA,∴BD=c-AD=c-bcosA. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)在中,邊的中點,于點.動點從點出發(fā)沿射線以每秒厘米的速度運動.同時,動點從點出發(fā)沿射線運動,且始終保持設(shè)運動時間為秒().
(1)相似嗎?以圖1為例說明理由;
(2)若厘米.
①求動點的運動速度;
②設(shè)的面積為(平方厘米),求的函數(shù)關(guān)系式;
(3)探求三者之間的數(shù)量關(guān)系,以圖1為例說明理由.

查看答案和解析>>

(本題滿分7分)在邊長為1個單位長度的小正方形組成的網(wǎng)格中,平面直角坐標系和四邊形的位置如圖所示.

(1)將四邊形ABCD關(guān)于y軸作軸對稱變換,得到四邊形A1B1C1D1,請在網(wǎng)格中畫出四邊形A1B1C1D1

(2)將四邊形ABCD繞坐標原點O按逆時針方向旋轉(zhuǎn)90°后得到四邊形A2B2C2D2,請直接寫出點D2的坐標為__ _       ___,點D旋轉(zhuǎn)到點D2所經(jīng)過的路徑長為____      __.

 

查看答案和解析>>

(本題滿分8分)

在一個口袋中有3個完全相同的小球,把它們分別標號為1、2、3,隨機地摸取一個小球后放回,再隨機地摸出一個小球,求“兩次取的小球的標號相同”的概率,請借助列表法或樹形圖說明理由.

 

查看答案和解析>>

(本題滿分9分)
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.

(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問當點E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

(本題滿分10分)在一個不透明的布袋中裝有相同的三個小球,其上面分別標注
數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回
袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.
(1)寫出點M坐標的所有可能的結(jié)果;
(2)求點M在直線yx上的概率;
(3)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.

查看答案和解析>>

1.C   2.B   3.C   4.C   5.A  6.D  7.C   8.B  9.B  10.B

11.3    12. 360°-36°?n       13.3.98cm     14.210cm,    15. 5   16.y= 2x+2

17.∵(x+5)(x+7)=(x2+12x+35+1-1)=(x+6)2-1<(x+6)2

∴(x+5)(x+7)< (x+6)2

18.(1)圖略                                        ……………………    3分

(2)12個單位                                        ………………   6分

19.解:連接DE,BF.

∵四邊形ABCD是矩形,

∴AB∥CD.   ∠ODF=∠OBE                    …………   1分

∵EF垂直平分BD,

∴OD=OB

∴ΔDOF≌ΔBOE(ASA)                            ………    2分

∴DF=BE

∴四邊形BFDE是平行四邊形。

∵EF垂直平分BD,

FD=FB(線段的垂直平分線上的點到線段兩端點的距離相等)

∴平行四邊形BFDE是菱形               ………    4分

∴DF=BF=DE=EB,OE=OF.

在RtΔDOF中,DF=+=250

∴S菱形DEBF=BD?EF=DF?BC

Х400х300=250?BC

∴BC=240                           …………   5分

在RtΔBCF中 FC===70

∴CD=DF+FC=250+70=320

∴S梯形ABCD=CD?BC=320×240=76800m2      ……………………..    6分

答略                      ……………     7分

20.解:將圓柱有相對的A.B垂直切開,并將半圓柱側(cè)面展開成一個矩形, ………   2分

如圖所示,作BO⊥AO于O,則AO,BO分別平行于矩形的兩邊,作A點關(guān)于D點的對稱點Aㄆ,連AㄆB,則ΔA`

BO為直角三角形,且BO==12,A`O=(15-3)+4=16, …………    4分

有勾股定理得    

A`B2=A´O2+BO2=162+122=400,

∴A´B=20                                  ………………  7分

故蜘蛛沿B外_壁C內(nèi)_壁A路線爬行最近,

且它至少要走20cm                            ………    8分

 

21.因為0.1x+0.01x2,而12,所以0.1x+0.01x2=12,………………   2分

解之,得, 舍去,故<40,

所以甲車未超速行駛。 ………………………………………………     4分

設(shè)=kx,把(60,15)代入,得 15=60k。解得,k=。

=x.          ………………………………………………  6分

由題意知 10<x<12解之得:40<x<48.

所以乙車超速行駛!      8分

22.(1)∵a2=b2+c2-2bccosA=25+49-2?5?7?cos60º= 39

  ∴a=                                      ……………   2分

∵b2=a2+c2-2accosB. 

∴cosB==

∠B≈36º                                         ……………   3分

∴∠C=180º-60º-36º=84º                         ……………    4分

(2).由余弦定理得  72=82+92-2×8×9cosA

得 cosA=

∴∠A≈48º                                               ………… 6分

再得  82=92+72-2×9×7cosB

得 cosB=

∠B≈58º                                      ………………              7分

∴∠C=180º-∠A-∠B=74º                              ………           8分

23.(1).連接BE,可得ΔABE∽ΔADB.               ………………               2分

∴ AB2=AD?AE                               ………………                4分

(2).成立                                     ………………                5分

連接EB,可證ΔAEB∽ΔABD,                     ………………              7分

∴仍可得AB2=AD?AE                               ……………            8分

24.(1)y=60-(x-100)0.02x   (0<x<550)              ………………         4分

(2)根據(jù)題意可列方程為:6000=[60-(x-100)0.02]x-40x

整理可得:x2-3100x+300000=0            ……………….         6分

       (x-500)(x-600)=0                              …………   8分

      x1=500     x2=600(舍去)                      ………………      9分    

銷售商訂購500個時,該廠可獲利潤6000元。                ……….  10分   

25.(1)S梯形OPFE=(OP+EF)?OE=(25+27)

設(shè)運動時間為t秒時,梯形OPFE的面積為y

則y=(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98.         ………………  3分

所以當t=7秒時,梯形OPFE的面積最大,最大面積為98;    ……………… 4分

(2)當S梯形OPFE=SΔAPF時,

-2t2+28t=,解得t1=8,t2=0(舍去)。                       ……………  7分

當t=8秒時,F(xiàn)P=8                                  ………………   8分

(3) 由,                        ………………    10分

且∠OAB=∠OAB,                                     ………   11分

可證得ΔAF1P1∽ΔAF2P2                                            ……  12分

 


同步練習冊答案