23.如圖8.已知⊙的弦垂直于直徑,垂足為.連接.. 查看更多

 

題目列表(包括答案和解析)

如圖1,已知在⊙O中,點(diǎn)C為劣弧AB上的中點(diǎn),連接AC并延長(zhǎng)至D,使CD=CA,連接DB并延長(zhǎng)DB交⊙O于點(diǎn)E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長(zhǎng)為4,求陰影部分的面積之和.(結(jié)果保留π與根號(hào))
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)如圖,若已知△ABC中,D、E分別為AB、AC的中點(diǎn),則可得DE∥BC,且DE=
12
BC.根據(jù)上面的結(jié)論:
(1)你能否說(shuō)出順次連接任意四邊形各邊中點(diǎn),可得到一個(gè)什么特殊四邊形并說(shuō)明理由;
(2)如果將(1)中的“任意四邊形”改為條件是“平行四邊形”或“菱形”或“矩形”或“等腰梯形”,那么它們的結(jié)論又分別怎樣呢?請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2012•歷下區(qū)二模)(1)已知:如圖1,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).求證:DE=DF.
(2)如圖2,已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是
AB
的中點(diǎn),過(guò)點(diǎn)D作直線BC的垂線,分別交CB,CA的延長(zhǎng)線于E,F(xiàn),求證:EF是⊙O的切線.

查看答案和解析>>

如圖1,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個(gè)圖形中有全等三角形的對(duì)數(shù)是( 。
精英家教網(wǎng)
A、n
B、2n-1
C、
n(n+1)
2
D、3(n+1)

查看答案和解析>>

如圖,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個(gè)圖形中有全等三角形的對(duì)數(shù)是
(n+1)n
2
(n+1)n
2

查看答案和解析>>

一、選擇題

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空題

11. ,     12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答題

17.

            


18

 

19.解:(1),,同理

(2)若平分,四邊形是菱形.

證明:,     四邊形是平行四邊形,

平行四邊形為菱形

 

20.解:(1)(每圖2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)當(dāng)旋鈕開(kāi)到36°附近時(shí)最省氣,當(dāng)旋鈕開(kāi)到90°時(shí)最省時(shí).最省時(shí)和最省氣不可能同時(shí)做到.………………………………………………………………………………………8分

說(shuō)明:第(3)問(wèn)只要表達(dá)意思明確即可,方式和文字不一定如此表達(dá).


注:最省氣的旋鈕位置在36°附近,接近0°~90°的黃金分割點(diǎn)0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如圖③,當(dāng)時(shí),設(shè)于點(diǎn),連結(jié),

,,

,,????????????????????????????? 3分

,,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.證明:(1),

        (2分)

             (3分)

(2)連結(jié)(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依題可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足為F. 則PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此時(shí),C為PB中點(diǎn),則t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵點(diǎn)A的坐標(biāo)為(0,16),且AB∥x軸

∴B點(diǎn)縱坐標(biāo)為16,且B點(diǎn)在拋物線

∴點(diǎn)B的坐標(biāo)為(10,16)...............................1分

又∵點(diǎn)D、C在拋物線上,且CD∥x軸

∴D、C兩點(diǎn)關(guān)于y軸對(duì)稱(chēng)

∴DN=CN=5...............................2分

∴D點(diǎn)的坐標(biāo)為(-5,4)...............................3分

(2)設(shè)E點(diǎn)的坐標(biāo)為(a,16),則直線OE的解析式為:..........................4分

∴F點(diǎn)的坐標(biāo)為()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)連結(jié)PH,PM,PK

∵⊙P是△AND的內(nèi)切圓,H,M,K為切點(diǎn)

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

設(shè)⊙P的半徑為r,則 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步練習(xí)冊(cè)答案