A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人)另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣的方法(按A類、B類分兩層)從該工廠的工人中抽取100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果如下表1和表2.
表1
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 8 x 3 2
表2
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 27 18
(Ⅰ)先確定x、y的值,再補(bǔ)齊下列頻率分布直方圖.

(Ⅱ)完成下面2×2列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“工人的生產(chǎn)能力與工人的類別有關(guān)”?
生產(chǎn)能力分組 [110,130) [130,150) 合計(jì)
A類工人
B類工人
合計(jì)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0,05 0.025 0.01 0.005
k 3.841 5.024 6.635 7.879

查看答案和解析>>

如圖,在正方體ABCD-A′B′C′D′中,直線A′B和直線AC、CC′、C′A所成的角的大小分別是α、β、γ,則α、β、γ的大小關(guān)系是( 。

查看答案和解析>>

(2012•武昌區(qū)模擬)通過隨機(jī)詢問110名性別不同的行人,對(duì)過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下的列聯(lián)表:
總計(jì)
走天橋 40 20 60
走斑馬線 20 30 50
總計(jì) 60 50 110
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,算得K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

參照獨(dú)立性檢驗(yàn)附表,得到的正確結(jié)論是(  )

查看答案和解析>>

設(shè)向量
a
=(1,cos2θ),
b
=(2,1),
c
=(4sinθ,1),
d
=(
1
2
sinθ,1).
(1)若θ∈(0,
π
4
),求
a
b
-
c
d
的取值范圍;
(2)若θ∈[0,π),函數(shù)f(x)=|x-1|,比較f(
a
b
)與f(
c
d
)的大。

查看答案和解析>>

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計(jì)
反感 10
不反感 8
合計(jì) 30
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請(qǐng)將上面的列表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,當(dāng)Χ2<2.706時(shí),沒有充分的證據(jù)判定變量性別有關(guān),當(dāng)Χ2>2.706時(shí),有90%的把握判定變量性別有關(guān),當(dāng)Χ2>3.841時(shí),有95%的把握判定變量性別有關(guān),當(dāng)Χ2>6.635時(shí),有99%的把握判定變量性別有關(guān))
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

一、選擇題

   D  A  A  C  D    C  D  C  B  B

二、填空題:

11.     12.     13.81     14.   15.②③

三、解答題: 

16.解:把函數(shù)按向量平移后得..............2分

(Ⅰ)=..................3分

............5分

則函數(shù)的值域?yàn)?sub>;.....................7分

(Ⅱ)當(dāng)時(shí),

  .............................................9分

 恒有解,,..................................11分

....................................................12分

 

17.解:(Ⅰ)設(shè)三角形三內(nèi)角A、B、C對(duì)應(yīng)的三邊分別為a, b, c,

,∴,由正弦定理有,

又由余弦定理有,∴,即,

所以為Rt,且 .................................. 3分

(1)÷(2),得...................................... 4分

令a=4k, b=3k (k>0)

∴三邊長分別為3,4,5.....................6分

(Ⅱ)以C為坐標(biāo)原點(diǎn),射線CA為x軸正半軸建立直角坐標(biāo)系,則A、B坐標(biāo)為(3,0),(0,4),直線AB方程為

設(shè)P點(diǎn)坐標(biāo)為(x, y),則由P到三邊AB、BC、AB的距離為d1, d2和d3可知

,..................................8分

.......................10分

,由線性規(guī)劃知識(shí)可知0≤m≤8,故d1+d2+d3的取值范圍是......12分

 

18.解:(Ⅰ)當(dāng)

                    ………………2分

,..............................................5分

        ................6分

定義域?yàn)?sub>     .................................7分

   (Ⅱ)對(duì)于,            

顯然當(dāng)(元),    ..................................9分

∴當(dāng)每輛自行車的日租金定在11元時(shí),才能使一日的凈收入最多。..........12分

 

19.解: (Ⅰ) ∵(1)=0

∴(an+2-an+1)-(3a n+1-4an)=0

即an+2-2an+1=2(an+1-2an)    又a22a1=4

∴數(shù)列{an+1-2an}是以2為公比,以4為首項(xiàng)的等比數(shù)列。...............2分

∴an+1-2an=4×2n-1=2 n+1

    且

∴數(shù)列{}是首項(xiàng)為1,公差為1的等差數(shù)列,....................4分

+(n-1)×1=n

.....................................................6分

    (Ⅱ)由,

        令Sn=|b1|+|b2|+…+|bn|=+2()2+3()3+…+n()n

      Sn=()2+2()3+…+(n-1)()n+n()n+1.......................8分

得Sn=+()2+()3+…+()n-n()n+1

=-n()n+1=2[1-()n]-n()n+1

∴ Sn=6[1-()n]-3n()n+1.....................10分

要使得|b1|+|b2|+…+|bn|<m對(duì)于n∈N恒成立,只須

   所以實(shí)數(shù)的取值范圍是。.......................................12分

 

20.解:(Ⅰ)因?yàn)?sub>

是函數(shù)的極值點(diǎn),,即..............2分

,則............4分

.........................................................6分

(Ⅱ)由(Ⅰ)可知

.................................8分

,當(dāng)時(shí),得,

則當(dāng)時(shí),;當(dāng)時(shí),,

所以上單調(diào)遞減,在單調(diào)遞增,..................10分

時(shí),,又,..................................12分

即對(duì)任意,恒有。..................................13分

 

 

 

21.解:(Ⅰ) 以AB所在直線為x軸,線段AB的中垂線為y軸建立直角坐標(biāo)系,

設(shè) |CA|+|CB|=2a(a>3)為定值,所以C點(diǎn)的軌跡是以A、B為焦點(diǎn)的橢圓,

所以焦距 2c=|AB|=6. ...................................................2分

 因?yàn)?

,所以

由題意得 ...........................................4分

此時(shí),|PA|=|PB|,P點(diǎn)坐標(biāo)為 P(0,±4).

所以C點(diǎn)的軌跡方程為   .............................6分

(Ⅱ)不妨設(shè)A點(diǎn)坐標(biāo)為A(-3,0),M(x1,y1),N(x2,y2)

(1)當(dāng)直線MN的傾斜角不為900時(shí),設(shè)其方程為 y=k(x+3) 代入橢圓方程化簡,得 .......................................7分

顯然有 △≥0, 所以

而由橢圓第二定義可得

                                            ......................... 10分

只要考慮 的最小值,即考慮取最小值,顯然.

當(dāng)k=0時(shí),取最小值16. .................................12分

(2)當(dāng)直線MN的傾斜角為900時(shí),x1=x2=-3,得 .....12分

,故,這樣的M、N不存在,即的最小值的集合為空集............................................................14分

 


同步練習(xí)冊(cè)答案