A. B. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A,B,C所對的邊分別為a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A.
(2)若
m
=(0,-1)
,
n
=(cosB,2cos2
C
2
)
,試求|
m
+
n
|的最小值.

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

4、函數(shù)y=log2(1-x)的圖象是( 。

查看答案和解析>>

11、已知A,B均為集合U={1,3,5,7,9}的子集,且A∩B={3},CUB∩A={9},則A=(  )

查看答案和解析>>

20、設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,則實(shí)數(shù)a,b必滿足( 。

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

20090508

(2)設(shè),則,

由正弦定理:,

所以兩個正三角形的面積和,…………8分

……………10分

,

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消費(fèi)總額為1500元的概率是:……………………7分

消費(fèi)總額為1400元的概率是:………8分

消費(fèi)總額為1300元的概率是:

,…11分

所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

19.(1)證明:因?yàn)?sub>,所以平面,

又因?yàn)?sub>,

平面,

平面平面;…………………4分

(2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面

所以的長為所求,………………………………………………………………………6分

因?yàn)?sub>,所以為二面角的平面角,,

=1,

點(diǎn)到平面的距離等于1;…………………………………………………………8分

(3)連接,由平面,,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

,

解得,所以,…………………3分

所以,

,

所以;…………………………………………………………………6分

(2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

當(dāng)且僅當(dāng)時,取得最小值,

則:

所以,即的取值范圍是。………………………………………12分

21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

(2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

…………………………………………7分

弦長為定值,則,即

此時,……………………………………………………9分

所以當(dāng)時,存在直線,截得的弦長為

    當(dāng)時,不存在滿足條件的直線!12分

22.解:(1),

,……2分

,

因?yàn)楫?dāng)時取得極大值,所以,

所以的取值范圍是:;………………………………………………………4分

(2)由下表:

0

0

遞增

極大值

遞減

極小值

遞增

………………………7分

畫出的簡圖:

依題意得:,

解得:,

所以函數(shù)的解析式是:

;……9分

(3)對任意的實(shí)數(shù)都有

,

依題意有:函數(shù)在區(qū)間

上的最大值與最小值的差不大于,

………10分

在區(qū)間上有:

,

的最大值是,

的最小值是,……13分

所以

的最小值是!14分

 

 


同步練習(xí)冊答案