A. B. C . D. 查看更多

 

題目列表(包括答案和解析)

10、在集合{a,b,c,d}上定義兩種運算⊕和?如圖那么d?(a⊕c)=( 。

查看答案和解析>>

函數(shù)y=
ex+e-x
ex-e-x
的圖象大致為( 。
A、精英家教網
B、精英家教網
C、精英家教網
D、精英家教網

查看答案和解析>>

平面直角坐標系中,O為坐標原點,設向量
OA
=
a
,
OB
=
b
,其中
a
=(3,1),
b
=(1,3)
,若
OC
a
b
,且0≤μ≤λ≤1,那么C點所有可能的位置區(qū)域用陰影表示正確的是(  )
A、精英家教網
B、精英家教網
C、精英家教網
D、精英家教網

查看答案和解析>>

12、今年“3•15”,某報社做了一次關于“什么是新時代的雷鋒精神?”的調查,在A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,共回收1000份,因報道需要,再從回收的問卷中按單位分層抽取容量為150的樣本,若在B單位抽30份,則在D單位抽取的問卷是
60
份.

查看答案和解析>>

4、集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關系的是( 。

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

<track id="wlyjm"><span id="wlyjm"><dd id="wlyjm"></dd></span></track>

<style id="wlyjm"><strong id="wlyjm"><ruby id="wlyjm"></ruby></strong></style>

    <style id="wlyjm"><optgroup id="wlyjm"><small id="wlyjm"></small></optgroup></style>

        20090508

        (2)設,則

        由正弦定理:,

        所以兩個正三角形的面積和,…………8分

        ……………10分

        ,

        所以:………………………………………………………………12分

        18.解:(1);……………………6分

        (2)消費總額為1500元的概率是:……………………7分

        消費總額為1400元的概率是:………8分

        消費總額為1300元的概率是:

        ,…11分

        所以消費總額大于或等于1300元的概率是;……………………12分

        19.(1)證明:因為,所以平面,

        又因為,

        平面,

        平面平面;…………………4分

        (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

        過點E作EF垂直CD且交于點F,因為平面平面,所以平面

        所以的長為所求,………………………………………………………………………6分

        因為,所以為二面角的平面角,,

        =1,

        到平面的距離等于1;…………………………………………………………8分

        (3)連接,由平面,得到,

        所以是二面角的平面角,

        ,…………………………………………………………………11分

        二面角大小是!12分

        20.解:(1)設等差數(shù)列的公差為,依題意得:

        ,

        解得,所以,…………………3分

        所以,

        ,

        所以;…………………………………………………………………6分

        (2),因為,所以數(shù)列是遞增數(shù)列,…8分

        當且僅當時,取得最小值,

        則:,

        所以,即的取值范圍是。………………………………………12分

        21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

        因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

        (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

        假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為,

         

        …………………………………………7分

        弦長為定值,則,即,

        此時,……………………………………………………9分

        所以當時,存在直線,截得的弦長為,

            當時,不存在滿足條件的直線!12分

        22.解:(1),

        ,……2分

        因為當時取得極大值,所以,

        所以的取值范圍是:;………………………………………………………4分

        (2)由下表:

        0

        0

        遞增

        極大值

        遞減

        極小值

        遞增

        ………………………7分

        畫出的簡圖:

        依題意得:,

        解得:,

        所以函數(shù)的解析式是:

        ;……9分

        (3)對任意的實數(shù)都有

        ,

        依題意有:函數(shù)在區(qū)間

        上的最大值與最小值的差不大于,

        ………10分

        在區(qū)間上有:

        ,

        的最大值是

        的最小值是,……13分

        所以

        的最小值是!14分

         

         


        同步練習冊答案