21. 查看更多

 

題目列表(包括答案和解析)

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

(07年福建卷理)(本小題滿分12分)在中,,

(Ⅰ)求角的大;

(Ⅱ)若最大邊的邊長為,求最小邊的邊長.

查看答案和解析>>

(07年福建卷文)(本小題滿分12分)

設函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

(07年福建卷文)(本小題滿分12分)

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(I)求證:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

<bdo id="btj9j"></bdo>

      20090508

      (2)設,則,

          由正弦定理:,

             所以兩個正三角形的面積和,…………8分

                    ……………10分

             ,

             所以:……………………………………12分

      18.解:(1);………………………4分

             (2)消費總額為1500元的概率是:………………………5分

      消費總額為1400元的概率是:………6分

      消費總額為1300元的概率是:

      ,

      所以消費總額大于或等于1300元的概率是;……………………8分

      (3)

      ,

      所以的分布列為:

      0

      1

      2

      3

       

      0.294

      0.448

      0.222

      0.036

      ………………………………………………11分

             數(shù)學期望是:!12分

      19.(1)證明:因為,所以平面,

      又因為,平面,

      平面平面;…………………4分

      (2)因為,所以平面

      所以點到平面的距離等于點E到平面的距離,

      過點E作EF垂直CD且交于點F,因為平面平面,

      所以平面,

      所以的長為所求,………………………………………………………6分

      因為,所以為二面角的平面角,=1,

      到平面的距離等于1;…………………………8分

             (3)連接,由平面,,得到,

             所以是二面角的平面角,

             ,…………………………………………………11分

             又因為平面平面,二面角的大小是!12分

      20.解:(1)設等差數(shù)列的公差為,依題意得:

            

             解得,所以,…………………3分

             所以,

            

             所以;…………………………………………………………………6分

             (2),因為,

             所以數(shù)列是遞增數(shù)列,…8分

             當且僅當時,取得最小值,則:

             所以,即的取值范圍是!12分

      21.解:(1)設點的坐標為,則點的坐標為,點的坐標為,

      因為,所以

      得到:,注意到不共線,

      所以軌跡方程為;……………5分

      (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

      假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為,

       

      ……………………………………………………7分

      弦長為定值,則,即,

      此時……………………………………………………9分

      所以當時,存在直線,截得的弦長為,

         當時,不存在滿足條件的直線!12分

      22.解:(1)設,因為 上的增函數(shù),且,所以上的增函數(shù),

      所以,得到;所以的取值范圍為………4分

      (2)由條件得到,

      猜測最大整數(shù),……6分

      現(xiàn)在證明對任意恒成立,

      等價于

      ,

      時,,當時,,

      所以對任意的都有,

      對任意恒成立,

      所以整數(shù)的最大值為2;……………………………………………………9分

      (3)由(2)得到不等式,

      所以,……………………11分

      所以原不等式成立!14分

       

       


      同步練習冊答案