(C) (D) 查看更多

 

題目列表(包括答案和解析)

4、直線ax-y+2a=0與圓x2+y2=9的位置關(guān)系是( 。

查看答案和解析>>

3、給定下列四個(gè)命題:
①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;
③垂直于同一直線的兩條直線相互平行;
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.
其中,為真命題的是(  )

查看答案和解析>>

集合M={x|x=sin
3
,n∈Z},N={x|x=cos
2
,n∈Z},M∩N=( 。
A、{-1,0,1}B、{0,1}
C、{0}D、∅

查看答案和解析>>

已知條件p:x>1,條件q:
1
x
<1
,則p是q成立的(  )
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分也非必要條件

查看答案和解析>>

從裝有4粒大小、形狀相同,顏色不同的玻璃球的瓶中,隨意一次倒出若干粒玻璃球(至少一粒),則倒出奇數(shù)粒玻璃球的概率比倒出偶數(shù)粒玻璃球的概率(  )
A、小B、大C、相等D、大小不能確定

查看答案和解析>>

    2009.4

     

    1-10.CDABB   CDBDA

    11.       12. 4        13.        14.       15.  

    16.   17.

    18.解:(Ⅰ)由題意,有,

    .…………………………5分

    ,得

    ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

    (Ⅱ)由,得

    .           ……………………………………………… 10分

    ,∴.      ……………………………………………… 14分

    19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

    ∴數(shù)列的通項(xiàng)公式為.      ………………………………… 6分

    (Ⅱ) ∵,    ,      ①

    .      ②         

    ①-②得: …………………12分

                 得,                           …………………14分

    20.解:(I)取中點(diǎn),連接.

    分別是梯形的中位線

    ,又

    ∴面,又

    .……………………… 7分

    (II)由三視圖知,是等腰直角三角形,

         連接

         在面AC1上的射影就是,∴

         ,

    ∴當(dāng)的中點(diǎn)時(shí),與平面所成的角

      是.           ………………………………14分

                                                   

    21.解:(Ⅰ)由題意:.

    為點(diǎn)M的軌跡方程.     ………………………………………… 4分

    (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

        ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

           同理RQ的方程為,求得.  ………………………… 9分

    .  ……………………………… 13分

    當(dāng)且僅當(dāng)時(shí)取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

    22. 解:(Ⅰ),由題意得,

    所以                    ………………………………………………… 4分

    (Ⅱ)證明:令,,

    得:,……………………………………………… 7分

    (1)當(dāng)時(shí),,在,即上單調(diào)遞增,此時(shí).

              …………………………………………………………… 10分

    (2)當(dāng)時(shí),,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時(shí)只要或者即可,得,

    .                        …………………………………………14分

    由 (1) 、(2)得 .

    ∴綜上所述,對(duì)于,使得成立. ………………15分

     


    同步練習(xí)冊(cè)答案