已知函數(shù). 查看更多

 

題目列表(包括答案和解析)

(本題滿分15分)已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若是單調(diào)函數(shù),求實數(shù)的取值范圍.

 

 

查看答案和解析>>

本題滿分15分)已知函數(shù)(a-b)<b)。

(I)當(dāng)a=1,b=2時,求曲線在點(2,)處的切線方程。

(II)設(shè)的兩個極值點,的一個零點,且

證明:存在實數(shù),使得 按某種順序排列后的等差數(shù)列,并求

查看答案和解析>>

(本題滿分15分)已知函數(shù).

(I)討論上的奇偶性;

(II)當(dāng)時,求函數(shù)在閉區(qū)間[-1,]上的最大值.

查看答案和解析>>

(本題滿分15分)

已知函數(shù)在[1,+∞)上為增函數(shù),且,

(1)求的值;

(2)若在[1,+∞)上為單調(diào)函數(shù),求實數(shù)的取值范圍;

(3)若在上至少存在一個,使得成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

(本題滿分15分)

已知函數(shù)

(I)若x=1為的極值點,求a的值;

(II)若的圖象在點(1,)處的切線方程為,求在區(qū)間[-2,4]上的最大值;

(III)當(dāng)時,若在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

 

查看答案和解析>>

<dl id="xqhfh"></dl>

<strong id="xqhfh"><font id="xqhfh"><del id="xqhfh"></del></font></strong>

<bdo id="xqhfh"></bdo>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有,

.…………………………5分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

∴數(shù)列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

    

∴當(dāng)的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當(dāng)且僅當(dāng)時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得,

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,

得:……………………………………………… 7分

(1)當(dāng)時,,在,即上單調(diào)遞增,此時.

          …………………………………………………………… 10分

(2)當(dāng)時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

 


同步練習(xí)冊答案