由可得. --①---------------10分 查看更多

 

題目列表(包括答案和解析)

已知x,y∈R+,且x+y=2,求
1
x
+
2
y
的最小值;給出如下解法:由x+y=2得2≥2
xy
①,即
1
xy
≥1
②,又
1
x
+
2
y
≥2
2
xy
③,由②③可得
1
x
+
2
y
≥2
2
,故所求最小值為2
2
.請判斷上述解答是否正確
不正確
不正確
,理由
①和③不等式不能同時取等號.
①和③不等式不能同時取等號.

查看答案和解析>>

已知數(shù)列滿足(I)求數(shù)列的通項公式;

(II)若數(shù)列,前項和為,且證明:

【解析】第一問中,利用

∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

第二問中, 

進一步得到得    即

是等差數(shù)列.

然后結(jié)合公式求解。

解:(I)  解法二、,

∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數(shù)列.

     

 

查看答案和解析>>

給出下列幾種說法:

①△ABC中,由可得;

②△ABC中,若,則△ABC為銳角三角形;

③若成等差數(shù)列,則;

④若,則成等比數(shù)列.

其中正確的有                     

 

查看答案和解析>>

關(guān)于函數(shù)f(x)= 4 sin(2x+)(),有下列命題:

①由可得必是的整數(shù)倍;

的表達式可改寫為;

的圖象關(guān)于點對稱;

的圖象關(guān)于直線對稱.

其中正確命題的序號是________________.

 

查看答案和解析>>

關(guān)于函數(shù)有下列命題:

①由可得必是的整數(shù)倍;

的表達式可改寫為;

的圖象關(guān)于點對稱;

的圖象關(guān)于直線對稱;

在區(qū)間上是增函數(shù);其中正確的是             . (請將所有正確命題的序號都填上)

 

查看答案和解析>>


同步練習冊答案