(1)求的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由

查看答案和解析>>

數(shù)列的通項(xiàng)公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測(cè)出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

求通項(xiàng)公式:

(1)的各項(xiàng)均為正數(shù),且滿足關(guān)系,;求

(2)中,,,求

(3)設(shè),數(shù)列n2時(shí)滿足

,,求

查看答案和解析>>

求通項(xiàng)公式:

(1)的各項(xiàng)均為正數(shù),且滿足關(guān)系;求

(2)中,,,求

(3)設(shè),數(shù)列在n≥2時(shí)滿足

,,求

查看答案和解析>>

數(shù)列{an}的通項(xiàng)公式為an=
1
(n+1)2
(n∈N*),設(shè)f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達(dá)式;
(3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項(xiàng)和為g(n),求證:當(dāng)n∈N*時(shí),g(2n)-
n
2
≥1.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空題(每題4分,共16分)

13、          14、        15、1     16、15

三、解答題(共74分)

17、(本小題滿分12分)

(1)

函數(shù)的最小正周期是

當(dāng)時(shí),即時(shí),函數(shù)有最大值1。

(2)由,得

當(dāng)時(shí),取得,函數(shù)的單調(diào)遞減區(qū)間是

(3)

18、(本小題滿分12分)

(1)由題意知:,∴=1

①,∴當(dāng) n≥2時(shí),

①-②得:

>0,∴,(n≥2且

是以=1為首項(xiàng),d=1為公差的等差數(shù)列

=n

(2)

是以為首項(xiàng),為公比的等比數(shù)列

,∴

                        ①

           ②

①-②得

19、(本小題滿分12分)

(1)當(dāng)時(shí),

上是增函數(shù)

上是增函數(shù)

∴當(dāng)時(shí),

(2)上恒成立

上恒成立

上恒成立

上是減函數(shù),

∴當(dāng)時(shí),

∴所求實(shí)數(shù)a的取值范圍為

20、(本小題滿分12分)

此時(shí)

,∴,∴

∴實(shí)數(shù)a不存在

21、(本小題滿分12分)

(1)若方程表示圓,則,∴

(2)設(shè)M、N的坐標(biāo)分別為、

,得

,∴,∴    ①

,得

代入①得

(3)設(shè)MN為直徑的圓的方程為,

∴所求圓的方程為

22、(本小題滿分14分)

(1)當(dāng)時(shí),

設(shè)x為其不動(dòng)點(diǎn),則,即

或2,即的不動(dòng)點(diǎn)是-1,2

(2)由

由題意知,此方程恒有兩個(gè)相異的實(shí)根

對(duì)任意的恒成立

,∴

(3)設(shè),則直線AB的斜率,∴

由(2)知AB中點(diǎn)M的坐標(biāo)為

又∵M(jìn)在線段AB的垂直平分線上,∴

(當(dāng)且僅當(dāng)時(shí)取等號(hào))

∴實(shí)數(shù)b的取值范圍為

 

 


同步練習(xí)冊(cè)答案