又|F2C|=|F2D| 查看更多

 

題目列表(包括答案和解析)

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

設(shè)F1、F2分別是橢圓
x2
5
+
y2
4
=1
的左、右焦點.
(Ⅰ)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(Ⅱ)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

設(shè)、分別是橢圓的左、右焦點.,

(1)若P是該橢圓上的一個動點,求的最大值和最小值;

   (2)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

設(shè)、分別是橢圓的左、右焦點.

(Ⅰ)若P是該橢圓上的一個動點,求的最大值和最小值;

   (Ⅱ)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

設(shè)F1、F2分別是橢圓數(shù)學(xué)公式的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求數(shù)學(xué)公式的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案