題目列表(包括答案和解析)
已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.
(本題滿分12分)已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(08年朝陽區(qū)綜合練習一)(14分)
已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.
(本題滿分14分)如圖,拋物線的焦點為F,橢圓 的離心率,C1與C2在第一象限的交點為
(1)求拋物線C1及橢圓C2的方程;
(2)已知直線與橢圓C2交于不同兩點A、B,點M滿足,直線FM的斜率為k1,試證明
已知橢圓()右頂點到右焦點的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓分別交于、兩點,若線段的長為,求直線的方程.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com