時取得最大值.則a的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

時,函數時取得最大值,則a的取值范圍是(    )

 A.    B.    C.    D.

 

查看答案和解析>>

時,函數時取得最大值,則a的取值范圍是(    )

 A.    B.    C.    D.

 

查看答案和解析>>

時,函數時取得最大值,則a的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

時,函數時取得最大值,則a的取值范圍是                                                       

A.      B.       C.       D.

 

 

查看答案和解析>>

時,函數時取得最大值,則a的取值范圍是                                                      
A.B.  C. D.

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―5  CACBB        6―8  DDA

二、填空題(本大題共6小題,每小題5分,共30分)

9.                           10.

11.                         12.

13.                      14.

三、解答題:本大題共6小題共80-分。解答題應寫出文字說明,證明過程或演算步驟。

15.(本小題共滿分13分)

解:(I)由圖知:,得A=2;

    由A+B=3,得B=1;

   

    設

將函數的圖象向左平移,得

的圖象,

                          ……………………8分

   (II)依題意:

此時x的取值集合為   …………………………13分

<li id="54cq5"><small id="54cq5"></small></li>

   (I)證明:取AC中點F,連結MF,BF,

在三角形AC1C中,MN//C1C

       

   (II)設A1到平面AB1C1的距離為h,AA1⊥平面A1B1C1

       

   (III)三棱柱ABC―A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,又點D是等腰直角三角形A1B1C1斜邊A1B1的中點。

則C1D⊥A1B1

所以,;

平面A1B1BA內,過D作DE⊥AB1,垂足為E,連結C1E,則C1E⊥AB1;

是二面角,A1―AB1―C1的平面角,

在Rt

 

所以,二面角,A1―AB1―C1的大小為   ………………14分

17.(本小題滿分13分)

解:(I)設在第一次更換燈棍工作中,不需要更換燈棍的概率為P1,則

                                       ………………………………4分

   (II)對該盞燈來說,在第1,2次都更換了燈棍的概率為;在第一次未更換燈棍而在第二次需要更換燈棍的概率為,故所求概率為

          ………………………………8分

   (III)的可能取值為0,1,2,3;

    某盞燈在第二次燈棍更換工作中需要更換燈棍的概率為

   

    的分布列為

   

P

0

1

2

3

    此分布為二項分布―N(3,0.6)

                            …………………………13分

18.(本小題滿分13分)

    解:

   

    設M(m,4-m2),則過M點曲線C的切線斜率k=-2m

              …………………………6分

    由x=0,得

    由y=0,得

    設△AOB的面積為S,則

   

    令

    當上為減函數;

    當上為增函數;

    …………13分

19.(本小題滿分14分)

   (I)由焦點F(1,0)在上,得……………………1分

設點N(m,n)則 有:,      …………………………3分

解得,                       ……………………5分

N點不在拋物線C上。                    ………………………………7分

   (2)把直線方程代入拋物線方程得:

解得!12分

當P與M重合時,a=1

20.(本小題滿分13分)

    解:(I)因為,又因為當x=0時,f(0)=0,所以方程f(x)-x=0有實數根0。

    所以函數是的集合M中的元素!3分

   (II)假設方程f(x)-x=0存在兩個實數根不妨設,根據題意存在數

        使得等式成立。

        因為

        與已知矛盾,所以方程只有一個實數根;…………8分

   (III)不妨設

    又因為為減函數,

所以

所以

    所以

         …………………………13分

 


同步練習冊答案