題目列表(包括答案和解析)
若圓C過點M(0,1)且與直線相切,設(shè)圓心C的軌跡為曲線E,A、B(A在y軸的右側(cè))為曲線E上的兩點,點,且滿足
(Ⅰ)求曲線E的方程;
(Ⅱ)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(Ⅲ)分別過A、B作曲線E的切線,兩條切線交于點,若點恰好在直線上,求證:t與均為定值.
若圓C過點M(0,1)且與直線相切,設(shè)圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點
(I)求曲線E的方程; (II)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線上,求證:t與均為定值。
AP |
PB |
1 |
2 |
QA |
QB |
已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分
【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,
∴,曲線的方程為
第二問中,設(shè)點的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結(jié)論直線與曲線總有兩個公共點.
然后設(shè)點,的坐標(biāo)分別, ,則,
要使被軸平分,只要得到。
(1)設(shè)為曲線上的任意一點,則點在圓上,
∴,曲線的方程為. ………………2分
(2)設(shè)點的坐標(biāo)為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點,的坐標(biāo)分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點,使得總能被軸平分
AP |
PB |
1 |
2 |
QA |
QB |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com