A. B.25 C. D.16 查看更多

 

題目列表(包括答案和解析)

某工科院校對A,B兩個專業(yè)的男女生人數進行調查,得到如下的列聯表:
專業(yè)A 專業(yè)B 總計
女生 12 4 16
男生 38 46 84
總計 50 50 100
(Ⅰ)從B專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業(yè)”有關系呢?
注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
P(K2≥k) 0.25 0.15 0.10 0.025
k 1.323 2.072 3.841 5.024

查看答案和解析>>

某工科院校對A,B兩個專業(yè)的男女生人數進行調查,得到如下的列聯表:
專業(yè)A 專業(yè)B 總計
女生 12 4 16
男生 38 46 84
總計 50 50 100
(I)能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業(yè)”有關系呢?
(II)從專業(yè)A中隨機抽取2名學生,記其中女生的人數為X,求X的分布列和均值.注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)


P(K2≥k) 0.25 0.15 0.10 0.05 0.025
K 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

某工科院校對A,B兩個專業(yè)的男女生人數進行調查,得到如下的列聯表:
專業(yè)A 專業(yè)B 總計
女生 12 4 16
男生 38 46 84
總計 50 50 100
(I)能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業(yè)”有關系呢?
(II)從專業(yè)A中隨機抽取2名學生,記其中女生的人數為X,求X的分布列和均值.注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)


P(K2≥k) 0.25 0.15 0.10 0.05 0.025
K 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

數列為等差數列,     

A.12     B.25     C.16     D.15

查看答案和解析>>

的最大可能值為                 

A.32                          B.25                          C.18                          D.16

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17.文 解:

   (Ⅰ)3人各自進行1次實驗都沒有成功的概率

…………………………6分

   (Ⅱ)甲獨立進行3次實驗至少有兩次成功的概率

…………………………12分

17.理 解:(注:考試中計算此題可以使用分數,以下的解答用的是小數)

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數學期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=np=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=npq=3×0.4×0.6=0.72)

18.文 解:

   (Ⅰ)設數列

所以……………………3分

所以…………………………6分

   (Ⅱ)………………9分

………………12分

18.理 解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點P,連PM、PN,則PN//AD,

    <form id="0qdyc"><nobr id="0qdyc"></nobr></form><menuitem id="0qdyc"><fieldset id="0qdyc"><legend id="0qdyc"></legend></fieldset></menuitem>
    <menuitem id="0qdyc"><strong id="0qdyc"></strong></menuitem>

     

     

     

     

     

     

     

     

     

     

       (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

             顯然

    利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

    cos∠A1OA=.

    所以二面角的大小為arccos……………………………………………12分

    (20?文)同19理.

    (20?理)(I)證明:當q>0時,由a1>0,知an>0,所以Sn>0;………………2分

    當-1<q<0時,因為a1>0,1-q>0,1-qn>0,所以.

    綜上,當q>-1且q≠0時,Sn>0總成立.……………………5分

       (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

            Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

            依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

            ∵Sn>0,∴可得q-kq2>k,

    即k(1+q2)<q,k<.

    ∴k的取值范圍是. ……………………12分

    (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

             設f′(x)=0的二根為x1,x2,由已知得

             x1=-1,x2≥2,………………………………………………4分

             …………………………7分

            解得

            故a的取值范圍是…………………………………………12分

    (21?理)解:(I)設橢圓方程

            由2c=4得c=2,又.

            故a=3,b2=a2-c2=5,

            ∴所求的橢圓方程.…………………………………………5分

       (II)點F的坐標為(0,2),設直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

    得(9+5k2)x2+20kx-25=0,………………………………8分

    顯然△>0成立,

    根據韋達定理得

    ,                       ①

    .                           ②

    ,

    ,代入①、②得

                                         ③

                                        ④

    由③、④得

     …………………………………………14分

    (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

    (22.理)(1)證明:令

    原不等式…………………………2分

    ,

    單調遞增,,

    ………………………………………………5分

    單調遞增,,

     …………………………………………8分

    ………………………………9分

       (Ⅱ)令,上式也成立

    將各式相加

    ……………11分

    ……………………………………………………………………14分

     

     

     

     

     

     

     


    同步練習冊答案