⒗⑴--2分.--3分.--4分.當即時.單調增加--5分.所以的單調增區(qū)間是--6分(包含或不包含區(qū)間端點均可.但要前后一致). 查看更多

 

題目列表(包括答案和解析)

已知函數

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)設,若對任意,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,

時,;

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>

已知函數取得極值

(1)求的單調區(qū)間(用表示);

(2)設,,若存在,使得成立,求的取值范圍.

【解析】第一問利用

根據題意取得極值,

對參數a分情況討論,可知

時遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: ,

第二問中, 由(1)知: ,

,

 

從而求解。

解:

…..3分

取得極值, ……………………..4分

(1) 當時  遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: , ………….6分

 (2)  由(1)知: ,

,

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?

(II)當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力   第一問要利用相似比得到結論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

第二問,  

當且僅當

(3)令

∴當x > 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=在[6,+∞]上也單調遞增.                

∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

月餅是一種時間性很強的商品,若在中秋節(jié)前出售,每盒將獲利5元,若到中秋節(jié)還沒能及時售完,中秋節(jié)之后只能降價出售,每盒將虧損3元.根據市場調查,銷量(百盒)的概率分布如下:

銷量(百盒)

0.05

0.25

0.3

0.3

0.1

   由于市場風險較大,批發(fā)商要求零售商預訂月餅的數量,且每年只預訂一次,訂貨量以百盒為單位.

⑴.設訂購量為百盒時,獲利額為元.下表表示與對應的的分布列,請在空格處填入適當的值,并計算相應的獲利期望值;

⑵.預訂多少盒月餅最合理?

0.05

0.25

0.3

0.3

0.1

1

500

500

500

500

500

500

2

200

1000

1000

1000

1000

960

3

-100

700

1500

1500

1500

4

400

1200

2000

2000

5

100

900

1700

2500

(解答本題第⑴小題只需在下面的表格的空位中填入你認為正確的數據即可)

查看答案和解析>>

已知函數

(1)若函數的圖象經過P(3,4)點,求a的值;

(2)比較大小,并寫出比較過程;

(3)若,求a的值.

【解析】本試題主要考查了指數函數的性質的運用。第一問中,因為函數的圖象經過P(3,4)點,所以,解得,因為,所以.

(2)問中,對底數a進行分類討論,利用單調性求解得到。

(3)中,由知,.,指對數互化得到,,所以,解得所以, 或 .

解:⑴∵函數的圖象經過,即.        … 2分

,所以.             ………… 4分

⑵當時,;

時,. ……………… 6分

因為,

時,上為增函數,∵,∴.

.當時,上為減函數,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>


同步練習冊答案