又.是以為首項(xiàng).為公比的等比數(shù)列. ---3分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列滿(mǎn)足(I)求數(shù)列的通項(xiàng)公式;

(II)若數(shù)列,前項(xiàng)和為,且證明:

【解析】第一問(wèn)中,利用,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

第二問(wèn)中, 

進(jìn)一步得到得    即

是等差數(shù)列.

然后結(jié)合公式求解。

解:(I)  解法二、

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數(shù)列.

     

 

查看答案和解析>>

(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.

(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).

(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;

(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;

(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.

 

查看答案和解析>>

(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.

查看答案和解析>>

(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.

查看答案和解析>>

對(duì)數(shù)列{xn},滿(mǎn)足數(shù)學(xué)公式,數(shù)學(xué)公式;對(duì)函數(shù)f(x)在(-2,2)上有意義,數(shù)學(xué)公式,且滿(mǎn)足x,y∈(-2,2)時(shí),有數(shù)學(xué)公式成立,則數(shù)列{f(xn)}是


  1. A.
    以-4為首項(xiàng)以2為公差的等差數(shù)列
  2. B.
    以-4為首項(xiàng)以2為公比的等比數(shù)列
  3. C.
    既是等差數(shù)列又是等比數(shù)列
  4. D.
    既不是等差數(shù)列又不是等比數(shù)列

查看答案和解析>>


同步練習(xí)冊(cè)答案