已知.滿足.則函數(shù)的圖象在點處的切線方程為 查看更多

 

題目列表(包括答案和解析)

已知,滿足,則函數(shù)的圖象在點處的切線方程為

A.                              B.

C.                           D.

查看答案和解析>>

已知函數(shù)f(x)=
-x3+x2+bx+c(x<1)
alnx(x≥1)
,的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)若P,Q是曲線y=f(x)上的兩點,且△POQ是以O為直角頂點的直角三角形,此三角形斜邊的中點在y軸上,則對任意給定的正實數(shù)a,滿足上述要求的三角形有幾個?

查看答案和解析>>

已知f(x)=x(x-1)(x-m),滿足f′(0)=f′(1),則函數(shù)f(x)的圖象在點(m,f(m))處的切線方程為( 。

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結合(I)中的結論證明:

 

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y="kx" +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y="kx" +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結合(I)中的結論證明:

查看答案和解析>>

一.選擇題

序號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空題

13. 2或8;        14. ;            15.;           16..

三.解答題

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

則V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F(xiàn)為PC的中點,∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E為PD中點,F(xiàn)為PC中點,∴EF∥CD.則EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.設第一個匣子里的三把鑰匙為A,B,C,第二個匣子里的三把鑰匙為a,b,c(設A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)

(Ⅰ)第一道門打不開的概率為;……………………………………………………………5分

(Ⅱ)能進入第二道門的情況有Aa,Ab,Ac,Ba,Bb,而二把鑰匙的不同情況有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9種,故能進入第二道門的概率為……………………………………………………………12分

 

20.(Ⅰ)依題

 

…………………………………………………3分

為等差數(shù)列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)設公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

成等差數(shù)列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依題PN為AM的中垂線

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………5分

(Ⅱ)設直線的方程為:y=k(x-1),代入橢圓E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個根.

…………………………………………………………7分

依題

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   時,……①

時,恒成立,

時,①式化為……②

時,①式化為……③…………………………………………………5分

,則…………………………7分

所以

故由②,由③………………………………………………………………………13分

綜上時,恒成立.………………………………………………14分

解法(二):

   時,……①

時,,,不合題意…………………………………………………2分

恒成立

上為減函數(shù),

,矛盾,…………………………………………………………………………………5分

,=

   若,,故在[-1,1]內(nèi),

,得,矛盾.

依題意,  解得

綜上為所求.……………………………………………………………………………14分

 

 

 

 

 


同步練習冊答案