題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動,并且滿足。
(1)求動點(diǎn)P的軌跡方程。
(2)若過點(diǎn)A的直線L與動點(diǎn)P的軌跡交于M、N兩點(diǎn),且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一.選擇題
序號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
A
C
B
D
A
二填空題
13. 2或8; 14. ; 15.; 16..
三.解答題
17.解:(Ⅰ)
………………………………………………………………4分
…………………………6分
(Ⅱ) …………………………………………………8分
∴ …………………………………………………………………………10分
………………………………………………………………………………12分
18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分
∴=
.………………………………………………………………4分
則V=. ……………………………………………………………… 6分
(Ⅱ)∵PA=CA,F(xiàn)為PC的中點(diǎn),∴AF⊥PC. ……………………………………8分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點(diǎn),F(xiàn)為PC中點(diǎn),∴EF∥CD.則EF⊥PC. ………………………………10分
∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分
19.設(shè)第一個(gè)匣子里的三把鑰匙為A,B,C,第二個(gè)匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)
(Ⅰ)第一道門打不開的概率為;……………………………………………………………5分
(Ⅱ)能進(jìn)入第二道門的情況有Aa,Ab,Ac,Ba,Bb,而二把鑰匙的不同情況有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9種,故能進(jìn)入第二道門的概率為……………………………………………………………12分
20.(Ⅰ)依題
即( …………………………………………………3分
故為等差數(shù)列,a1=1,d=2
………………………………………………………………………………………………5分
(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分
又成等差數(shù)列
………………………………………………………………………………………8分
或…………………………………………………………………………………10分
或……………………………………………………………………12分
21解:(Ⅰ)依題PN為AM的中垂線
…………………………………………………2分
又C(-1,0),A(1,0)
所以N的軌跡E為橢圓,C、A為其焦點(diǎn)…………………………………………………………4分
a=,c=1,所以為所求………………………………………………………5分
(Ⅱ)設(shè)直線的方程為:y=k(x-1),代入橢圓E的方程:x2+2y2=2得:
(1+2k2)x2-4k2x+2k2-2=0………………(1)
設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個(gè)根.
…………………………………………………………7分
依題
………………………………………………………9分
解得:………………………………………………………………………12分
22.解法(一):
時(shí), 即……①
⑴時(shí),恒成立,
⑵時(shí),①式化為……②
⑶時(shí),①式化為……③…………………………………………………5分
記,則…………………………7分
所以
故由②,由③………………………………………………………………………13分
綜上時(shí),在恒成立.………………………………………………14分
解法(二):
時(shí), 即……①
⑴時(shí),,,不合題意…………………………………………………2分
⑵恒成立
∴在上為減函數(shù),
得,矛盾,…………………………………………………………………………………5分
⑶,=
若則,,故在[-1,1]內(nèi),
,得,矛盾.
若
依題意, 解得 即
綜上為所求.……………………………………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com