下列函數(shù)圖中.正確的是 線上以點為切點的切線方程是 查看更多

 

題目列表(包括答案和解析)

對于函數(shù),給出下列命題:①過該函數(shù)圖象上一點的切

線的斜率為;②函數(shù)的最小值等于;③該方程有四個不同的實數(shù)根;④函數(shù)

以及上都是增函數(shù),其中正確命題的個數(shù)是(    )

A、1                B、2            C、3            D、4

 

查看答案和解析>>

對于函數(shù),給出下列命題:①過該函數(shù)圖象上一點的切
線的斜率為;②函數(shù)的最小值等于;③該方程有四個不同的實數(shù)根;④函數(shù)
以及上都是增函數(shù),其中正確命題的個數(shù)是(   )
A.1B.2C.3D.4

查看答案和解析>>

設(shè)函數(shù)y=f(x)的定義域R上的奇函數(shù),滿足f(x-2)=-f(x),對一切x∈R都成立,又知當-1≤x≤1時,f(x)=x3,則下列四個命題
①f(x)是以4為周期的周期函數(shù);
②f(x)在[1,3]上的解析式f(x)=(2-x)3
f(x)在點(
3
2
,f(
3
2
))
處的切線方程為3x+4y-5=0;
④x=±1是函數(shù)f(x)圖象的對稱軸.
其中正確的是
 

查看答案和解析>>

設(shè)函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(x-2)=-f(x)對一切x∈R都成立,又當x∈[-1,1]時,f(x)=x3,則下列五個命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù);
②當x∈[1,3]時,f(x)=( x-2)3
③直線x=±1是函數(shù)y=f(x)圖象的對稱軸;
④點(2,0)是函數(shù)y=f(x)圖象的對稱中心;
⑤函數(shù)y=f(x)在點(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

設(shè)函數(shù)y=f(x)是定義域為R的奇函數(shù),且滿足f(x-2)= -f(x)對一切x∈R恒成立,當x∈[0,1]時,
f(x)=x3,給出下列四個命題:
①f(x)是以4為周期的周期函數(shù);
②f(x)在[1,3]上的解析式為f(x)=(2-x)3;
③f(x)圖象的對稱軸有x=±1;
④f(x)在點(,f())處的切線方程為3x+4y=5;
⑤函數(shù)f(x)在R上無最大值。
其中正確命題的序號是(    )(寫出所有正確命題的序號)。

查看答案和解析>>

一.  ADBCA  CABBA  BC

二.   13.3;      14.(-∞,4];      15. ;        16. .

三.

17. 解:解:由,得  …3分

 

                                    ………………6分                 

  =   !10分

18. 解:(I)分別記“客人游覽甲景點”,“客人游覽乙景點”,“客人游覽丙景點”為事件A1,A2,A3.由已知A1,A2,A3相互獨立,P(A1)= 0.4,P(A2)= 0.5,P(A3)= 0.6.

P(ξ= 3)= P(A1?A2?A3)+P(A1?A2?A3)

= P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3))

= 2×0.4×0.5×0.6= 0.24.4分………………7分  

(Ⅱ)客人游覽的景點數(shù)的可能取值為0,1,2,3.相應(yīng)地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.∴P(ξ= 1)= 1-0.24= 0.76. ………12分

 

 

19、解:解法一:(Ⅰ)取中點,連結(jié)

為正三角形,

正三棱柱中,平面平面,

平面

連結(jié),在正方形中,分別為

的中點,

,

.………………………………….3分

在正方形中,,

 

平面.………………………………….5分

(Ⅱ)設(shè)交于點,在平面中,作,連結(jié),由(Ⅰ)得平面

為二面角的平面角.………………………………….9分

中,由等面積法可求得

,

所以二面角的正弦值.………………………………….12分

解法二:(Ⅰ)取中點,連結(jié)

為正三角形,.$

平面

中點,以為原點,,的方向為軸的正方向建立空間直角坐標系,則,,,…….3分

,

,,

平面.………………………………….6分

(Ⅱ)設(shè)平面的法向量為

,

,,

為平面的一個法向量.…………………………9分

由(Ⅰ)知平面,

為平面的法向量.

二面角的正弦值…………………………12

20. 解:(1)由已知得解得

設(shè)數(shù)列的公比為,由,可得

,可知,

, 解得

由題意得. 故數(shù)列的通項為.…………6

(2)由于

    由(1)得   又          是等差數(shù)列.

==

.…………………………12

 

21.解:解:(Ⅰ)由題意知f′(x)= ax2+bx-a2,且f′(x)= 0的兩根為x1、x2.

∴x1+x2= -  x1x2= -a.

∴(x2-x1)2= (x2+x1)2-4x1x2= 4.

∴()2+4a= 4.

∴b2= (4-4a)a2. …………………………6分

(Ⅱ)由(1)知b2= (4-4a)a2≥0,且0<a≤1

令函數(shù)g(a)= (4-4a)a2= -4a3+4a2(0<a≤1)

g′(a)= -12a2+8a8a(1-a)

令g'(a)= 0  ∴a1= 0,a2= .

函數(shù)g(a)在(0,)上為增函數(shù),(,1)上為減函數(shù).

∴g(a)max= g()= .

∴b2≤.

∴|b|≤.…………………………12分

 

22.解:(Ⅰ)由雙曲線的定義可知,曲線是以為焦點的雙曲線的左支,且,易知

故曲線的方程為…………………………3

設(shè),由題意建立方程組

消去,得

又已知直線與雙曲線左支交于兩點,有

       解得………………5

依題意得

整理后得

   ∴

故直線的方程為…………………………8

設(shè),由已知,得

,

∴點

將點的坐標代入曲線的方程,得

但當時,所得的點在雙曲線的右支上,不合題意

.…………………………10

的坐標為

的距離為

的面積…………………………12

 

 

 


同步練習冊答案