如圖.B為橢圓右頂點.橢圓上點C與A關于原點對稱.過點A作兩條直線交橢圓P.Q.交x軸與,求證:存在實數 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

精英家教網如圖,已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1
的右焦點F,拋物線:x2=4
3
y
的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;
(Ⅲ)連接AE、BD,試證明當m變化時,直線AE與BD相交于定點N(
5
2
,0)

查看答案和解析>>

精英家教網如圖,過橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點F1作x軸的垂線交橢圓于點P,
點A和點B分別為橢圓的右頂點和上頂點,OP∥AB.
(1)求橢圓的離心率e;
(2)過右焦點F2作一條弦QR,使QR⊥AB.若△F1QR的面積為20
3
,求橢圓的方程.

查看答案和解析>>

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F2,上頂點為A,在x軸負半軸上有一點B,滿足AB⊥AF2.且F1為BF2的中點.
(1)求橢圓C的離心率;
(2)D是過A,B,F2三點的圓上的點,D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程.

查看答案和解析>>

如圖,橢圓中心在坐標原點,點F為左焦點,點B為短軸的上頂點,點A為長軸的右頂點.當
FB
BA
時,橢圓被稱為“黃金橢圓”,則“黃金橢圓”的離心率e等于( 。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個答案中,只有一個項是符合題目要求的,把正確的代號填在答題卡指定的位置上。

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

C

A

A

A

D

B

D

C

二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應位置。

11.-1或             12.               13.0.32    

14.                  15.100100   

 

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟,在答題卡上相應題目的答題區(qū)域內作答。

16. (本小題滿分13分)

解:

  

兩邊平方并整理得

    

根據余弦定理得

 

17. (本小題滿分13分)

解法一:

(Ⅰ)由俯視圖可得:

           有俯視圖知

           

是以B為直角頂點的直角三角形。

(Ⅱ)三角形PAC的面積為

俯視圖是底邊長為,斜邊上的高為的等腰直角三角形

三角形PAB的面積為,且PB=

由(Ⅰ)知三角形PBC是直角三角形,故其面積為

故三棱錐P-ABC的全面積為

(Ⅲ)在面ABC內過A做AC的垂線AQ,

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸 、z軸建立空間直角坐標系,如圖所示

為面PAB的一個法向量

故當E為PC的中點時,AE與面PAB所成的為600

 

解法二:

(Ⅰ)由正視圖和俯視圖可判斷

在面ABC內過A做AC的垂線AQ

以A為原點,AC、AQ、AP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,如圖所示

是以B為直角頂點的直角三角形。

(Ⅱ)同解法一。

(Ⅲ)設為面PAB的一個法向量

故當E為PC的中點時,AE與面PAB所成的為600

 

18. (本小題滿分13分)

解:

(Ⅰ)設抽到相鄰兩個月的數據為事件A

因為從6組數據中選取2組數據共有中情況,每種情況都是等可能出現的其中,抽到相鄰兩個月的數據的情況有5種

所以

(Ⅱ)由數據求得

由公式求得

再由

所以y關于x的線性回歸方程為

(Ⅲ)當時,

同樣,當時,

所以,該小組所得線性回歸方程是理想的。

 

19. (本小題滿分13分)‘

   解:(Ⅰ)設橢圓方程為

    ①

點A(1,1)在橢圓上,    ②

    ③

故所求橢圓方程為

(Ⅱ)由A(1,1)得C(-1,1)

易知AP的斜率k必存在,設AP;

由A(1,1)得的一個根

由韋達定理得:

以-k代k得

即存在實數

20. (本小題滿分14分)

解:(Ⅰ)

時,

時,

連續(xù),故

(Ⅱ)即不等式在區(qū)間有解

可化為

在區(qū)間有解

在區(qū)間遞減,在區(qū)間遞增

所以,實數a的取值范圍為

(Ⅲ)設存在公差為d首項等于的等差數列

和公比q大于0的等比數列,使得數列的前n項和等于

 

   ①

  ②

②-①×2得

(舍去)

       故,

此時,數列的的前n項和等于

故存在滿足題意的等差數列金額等比數列,使得數列的前n項和等于

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21. 本題有(1)、(2)、(3)三個小題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分

(1)(本小題滿分7分)選修4――2:矩陣與變換

解一:

解二:

設 

(2)(本小題滿分7分)選修4――4:坐標系與凡屬方程

解:曲線C1可化為:

曲線C2可化為

聯立  解得交點為

(3)(本小題滿分7分)選修4――5:不等式選講

解:

當且僅當

取最小值,最小值為

 

 

 


同步練習冊答案