所以函數(shù)的單調(diào)遞增區(qū)間為[. ].. -----10分 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增。∴滿足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因?yàn)?<a<2,所以,.令 可得

對(duì)參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

.                            

,則,所以.  ……………………3分          

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

,則,所以

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因?yàn)?<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時(shí),            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時(shí),;

當(dāng)時(shí),

 

查看答案和解析>>


同步練習(xí)冊(cè)答案