(A)且n∥l (B)或n∥l 查看更多

 

題目列表(包括答案和解析)

在下列命題中,真命題是(  

  A.若直線m、n都平行平面a ,則mn

  B.設(shè)alb 是直二面角,若直線ml,則mb

  C.若直線m、n在平面a內(nèi)的射影依次是一個(gè)點(diǎn)和一條直線,且mn,則na 內(nèi)或na 平行

  D設(shè)mn是異面直線,若m與平面a 平行,則na 相交

 

查看答案和解析>>

在下列命題中,真命題是(  

  A.若直線m、n都平行平面a ,則mn

  B.設(shè)alb 是直二面角,若直線ml,則mb

  C.若直線m、n在平面a內(nèi)的射影依次是一個(gè)點(diǎn)和一條直線,且mn,則na 內(nèi)或na 平行

  D設(shè)m,n是異面直線,若m與平面a 平行,則na 相交

 

查看答案和解析>>

以下有四種說法:

①若p或q為真,p且q為假,則p與q必為一真一假;

②若數(shù)列的前n項(xiàng)和為Sn=n2+n+l,n∈N*,則∈N*

③若實(shí)數(shù)t滿足,則稱t是函數(shù)f(x)的一個(gè)次不動(dòng)點(diǎn).設(shè)函數(shù)f(x)=Inx與函數(shù)g(x)=ex(其中e為自然對(duì)數(shù)的底數(shù))的所有次不動(dòng)點(diǎn)之和為m,則m=0

④若定義在R上的函數(shù)f(x)滿足,則6為函數(shù)f(x)的周期

以上四種說法,其中說法正確的是

       A.①③                 B.③④                   C.①②③               D.①③④

查看答案和解析>>

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問是否存在實(shí)數(shù)λ,使成立.若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問是否存在實(shí)數(shù)λ,使成立.若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的.

(1) 函數(shù)=lg(x2-2x-3)的定義域是集合M,函數(shù)的定義域是集合P,則P∪M等于    ( A )

           (A)(-∞,-1)∪[1,+∞)                (B)(-∞,-3)∪[1,+∞)

(C)(-3,+∞)                                    (D)(-1,+∞)

(2) 在等比數(shù)列{an}中,a1=3,a6=24,則a16等于   ( D )

(A)864                 (B)1176                   (C)1440                   (D)1536

(3) 直線關(guān)于直線對(duì)稱的直線方程是   ( A )

(A)                              (B)

(C)                                     (D)

(4) 若平面α⊥平面β,l,m,n為兩兩互不重合的三條直線,,α∩β=l,且m⊥n,則   ( D )

(A)且n∥l                                     (B)或n∥l     

(C)                                     (D)

(5) △ABC中,若,則△ABC一定是   ( C )

(A)銳角三角形     (B)鈍角三角形        (C)直角三角形        (D)等腰三角形

(6) 函數(shù)在區(qū)間(-2,2)上    ( B )

(A)單調(diào)遞增                                           (B)單調(diào)遞減

(C)先單調(diào)遞增后單調(diào)遞減                      (D)先單調(diào)遞減后單調(diào)遞增

(7) 如圖,已知A,B,C是表面積為48π的球面上的三點(diǎn),

AB=2,BC=4,∠ABC=60°,O為球心,則二面角

O-AB-C的大小為    ( D )                                        

(A)                  (B)

(C)arccos        (D)arccos

 

(8) 一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于P點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是   ( A )

(A)橢圓                      (B)雙曲線               (C)拋物線               (D)圓

(9) 方程的解共有   ( C )

(A)1個(gè)             (B)2個(gè)           (C)3個(gè)           (D)4個(gè)

(10)如圖,某建筑工地搭建的腳手架局部類似于4×2×3的長(zhǎng)方體框架(由24個(gè)棱長(zhǎng)為1個(gè)單位長(zhǎng)度的正方體框架組合而成).一建筑工人從

A點(diǎn)沿腳手架到點(diǎn)B,每步走1個(gè)單位長(zhǎng)度,

且不連續(xù)向上攀登,則其行走的最近路線共

有   ( B )

(A)150條                  (B)525條

(C)840條          (D)1260條

 

二、填空題:本大題共6小題,每小題5分,共30分.不需寫出解答過程,請(qǐng)把答案直接填寫在答題卡相應(yīng)位置上

(11)不等式的解集為          .答案:

(12)函數(shù)的最小正周期T=           .答案:π

(13)過雙曲線的左焦點(diǎn)且垂直于x軸的直線與雙曲線相交于M,N兩點(diǎn),以MN為直徑的圓恰好過雙曲線的右頂點(diǎn),則雙曲線的離心率等于      .答案:2

(14)已知O是△ABC內(nèi)一點(diǎn),,則△AOB與△AOC的面積的比值為        

       答案:

(15)在的二項(xiàng)展開式中,所有有理項(xiàng)之和為S,當(dāng)x=2時(shí),S等于     .答案:2048

(16)已知集合A={(x,y)│|x|+|y|=2,x,y∈R},B={(x,y)│|xy|=a,x,y∈R},若A∩B中的元素所對(duì)應(yīng)的點(diǎn)恰好是一個(gè)正八邊形的八個(gè)頂點(diǎn),則正數(shù)a的值為     ▲     .答案:

 

三、解答題:本大題共5小題,共70分.請(qǐng)?jiān)?u>答題卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

(17)(本小題滿分14分)

袋中裝有20個(gè)不同的小球,其中有n,n>1)個(gè)紅球,4個(gè)藍(lán)球,10個(gè)黃球,其余為白球.已知從袋中取出3個(gè)顏色相同的彩球(不是白球)的概率為

(Ⅰ)求袋中的紅球、白球各有多少個(gè)?

(Ⅱ)從袋中任取3個(gè)小球,求其中一定有紅球的概率.

解:(Ⅰ)設(shè)“從袋中任取3球全為紅球”、“從袋中任取3球全為藍(lán)球”、“從袋中任取3 球全為黃球”分別為事件A,B,C,由題意知,A,B,C兩兩互斥,則

,.  …………………………………………4分

故從袋中取出成3個(gè)都是相同顏色彩球(不是白球)的概率為

,

. …………………………………………………6分

由此得從袋中取3球不可能全為紅球,從而.又,n>1,故

答:袋中有2個(gè)紅球4個(gè)白球. …………………………………………………………8分

         (Ⅱ)設(shè)“從袋中任取3個(gè)小球,其中一定有紅球”為事件D,則

答:從袋中任取3個(gè)小球,一定有紅球的概率為.………………………………14分

(18)(本小題滿分14分)

如圖,在長(zhǎng)方體中,,,

,M為AB的中點(diǎn),E,F分別為和AD1的中點(diǎn).

(Ⅰ)求證:直線EF⊥平面;

(Ⅱ)求直線與平面所成角的大。

解法一:(Ⅰ)延長(zhǎng)AE交A1B1于點(diǎn)N,則點(diǎn)N為A1B1的中點(diǎn).

連D1N,∵E,F(xiàn)分別是A1M,AD1的中點(diǎn),

∴EF∥D1N.…………………………………………………………………………2分

在Rt△A1C1D1與Rt△ND1A1中,∵,

∴Rt△A1C1D1∽R(shí)t△ND1A1,∴A1C1⊥D1N.………………………………………4分

又AA1⊥D1N,A1C1∩AA1=A1,∴D1N⊥平面AA1C1C.…………………………6分

(Ⅱ)過點(diǎn)A1作A1H⊥AN,垂足為H,連D1H.由三垂線定理,得 D1H⊥AN,

∴AN ⊥平面A1D1H,∴平面A1D1 H⊥平面AEF.

∴A1D1在平面AEF中的射影即為D1H,

∠A1D1H就是A1D1與平面AEF所成的角.………………………………………10分

在Rt△AA1N中,AA1=2,A1N=,∴A1H=

tan∠A1D1H=,故直線A1D1與平面AEF所成的角為arctan

∵AD∥A1D1,∴直線AD與平面AEF所成的角為arctan.…………………14分

解法二:(Ⅰ)以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸建立空間坐標(biāo)系.

則A(0,0,0),B(,0,0),C(,1,0),D(0,1,0),A1(0,0,2),

B1,0,2),C1,1,2),D(0,1,2). 

=(0,0,2),=(,1,0).

又M(,0,0),E(,0,1),F(xiàn)(0,,1),

=(-,,0). ………………………………………………………3分

?=(-,,0)?(0,0,2)=0,

?=(-,0)?(,1,0)=0,∴,

又A1C1∩AA1=A1,∴EF⊥平面AA1C1C.………………………………………6分

(Ⅱ)設(shè)向量n=(1,x,y)是平面AEF的一個(gè)法向量.

由(Ⅰ),可得=(-,0,1),=(0,,1). ………………8分

?n=0,?n=0,得  解之,得

故n=(1,,-). ……………………………………………………11分

設(shè)直線AD與平面AEF所成的角為α,則sinα=

所以設(shè)直線AD與平面AEF所成的角為arcsin.…………………………14分

(19)(本小題滿分14分)

將圓按向量a=(-1,2)平移后得到⊙O,直線l與⊙O相交于A、B兩點(diǎn),若在⊙O上存在點(diǎn)C,使 =λa,求直線l的方程及對(duì)應(yīng)的點(diǎn)C的坐標(biāo).

解:圓化為標(biāo)準(zhǔn)方程為,

按向量a=(-1,2)平移得⊙O方程為 x2+y2=5.……………………………………2分

=λa,且||=||,∴∥a. ……………………5分

∴kAB.設(shè)直線l的方程為y=x+m,聯(lián)立,得

將方程(1)代入(2),整理得5x2+4mx+4m2-20=0.(※) …………………………8分

設(shè)A(x1,y1),B(x2,y2),則

        x1+x2=-,y1+y2,=(-). ……………………………10分

因?yàn)辄c(diǎn)C在圓上,所以,解之,得

此時(shí),(※)式中的△=16m2-20(4m2-20)=300>0.…………………………………12分

所求的直線l的方程為2x-4y+5=0,對(duì)應(yīng)的C點(diǎn)的坐標(biāo)為(-1,2);或直線l的方程為2x-4y-5=0,對(duì)應(yīng)的C點(diǎn)的坐標(biāo)為(1,-2).……………………………………14分

解法二:同解法一,得⊙O的方程.……………………………………………………2分

=λa,有||=|λa |,從而λ=±1.……………………………………………5分

(1)當(dāng)λ=1時(shí),=a=(-1,2),所以C(-1,2).從而OC的中點(diǎn)為M(-,1).

,可得點(diǎn)MAB上,又由,

得直線的l的方程為,即.………………………………9分

(2)當(dāng)λ=-1時(shí),=-a=(1,-2),所以C(1,-2).

OC的中點(diǎn)為N(,-1).

同樣由點(diǎn)NAB上,可得直線l方程為. ……………………………12分

所求的直線l的方程為2x-4y+5=0,對(duì)應(yīng)的C點(diǎn)的坐標(biāo)為(-1,2);或直線l的方程為2x-4y-5=0,對(duì)應(yīng)的C點(diǎn)的坐標(biāo)為(1,-2).……………………………………14分

(20)(本小題滿分14分)

已知是定義在R上的函數(shù),對(duì)于任意的實(shí)數(shù)a,b,都有,且

(Ⅰ)求的值;

(Ⅱ)求的解析式().

解:(Ⅰ)令,則,從而.……………………2分

,可得.………………5分

(Ⅱ)

設(shè),則.…………………………………………………9分

兩邊同乘以,可以得到,即

故數(shù)列為公差為等差數(shù)列.  ……………………………………………12分

,可得,

所以,即.   ……………………………………………14分

(21)(本小題滿分14分)

設(shè)函數(shù)=x|x-a|+b.

(Ⅰ)求證:為奇函數(shù)的充要條件是a2+b2=0;

(Ⅱ)設(shè)常數(shù)b<2-3,且對(duì)任意x∈[0,1],<0恒成立,求實(shí)數(shù)a的取值范圍.

解:(Ⅰ)充分性:若a2+b2=0時(shí),即a=b=0,所以 f(x)=x | x|.

∵f(-x)=-x |-x|=-x |x|=-f(x),對(duì)一切x∈R恒成立,

∴f(x)是奇函數(shù). ……………………………………………………………………2分

            必要性:若f(x)是奇函數(shù),則對(duì)一切x∈R,f(-x)=-f(x)恒成立,即

                    -x |-x-a|+b=-x |x-a|-b.

令x=0,得b=-b,所以b=0.………………………………………………………4分

再令x=a,得  2a | a |=0,∴a=0,即a2+b2=0.…………………………………6分

(Ⅱ)解法一:∵b<2-3<0,∴當(dāng)x=0時(shí),a取任意實(shí)數(shù)不等式恒成立,

故考慮x∈(0,1]時(shí),原不等式變?yōu)?| x-a |<-,即 x+<a<x-

∴只需對(duì)x∈(0,1],滿足 ………………………………8分

對(duì)(1)式,由b<0時(shí),在(0,1]上,f(x)=x+為增函數(shù),

∴(x+max=f(1)=1+b.

∴a>1+b.                               (3) ……………………………10分

對(duì)(2)式,當(dāng)-1≤b<0時(shí),在(0,1]上,x-=x+≥2

當(dāng)x=時(shí),x-=2,∴(x-min=2

∴a<2.                             (4)

由(3)、(4),要使a存在,必須有 即-1≤b<-3+2

∴當(dāng)-1≤b<-3+2時(shí),1+b <a<2.……………………………………12分

當(dāng)b<-1時(shí),在(0,1]上,f(x)=x-為減函數(shù),(證明略)

∴(x-min=f(1)=1-b.

∴當(dāng)b<-1時(shí),1+b <a<1-b.

綜上所述,當(dāng)-1≤b<2-3時(shí),a的取值范圍是(1+b,2);當(dāng)b<-1時(shí),a的取值范圍是(1+b,1-b).………………………………………………………14分

            解法二:f(x)=x|x-a|+b<0(x∈[0,1],b<2-3恒成立,即x|x-a|<-b.

由于b是負(fù)數(shù),故x2-ax<-b,且x2-ax>b.

(1)x2-ax<-b在x∈[0,1],b<2-3恒成立,設(shè)g(x)= x2-ax+b,

其中(1),(3)顯然成立,由(2),得a>1+b.(※)………………………………8分

(2)x2-ax-b>0在x∈[0,1],b<2-3恒成立,設(shè)h(x)= x2-ax-b,

即a<0.

結(jié)合(※),得b<-1時(shí),1+b<a<0;-1≤b<2-3時(shí),a值不存在.  ……9分

結(jié)合(※),得b<-1時(shí),0<a≤2;-1≤b<2-3時(shí),b+1<a<2.…11分

結(jié)合(※),得b<-1時(shí),2<a<1-b;-1≤b<2-3時(shí),a不存在.………12分

綜上,得-1≤b<2-3時(shí),b+1<a<2;b<-1時(shí),b+1<a<1-b.…14分

 


同步練習(xí)冊(cè)答案