題目列表(包括答案和解析)
易知
|
認(rèn)真觀察數(shù)陣,可以求出和式的值為 。
易知
|
認(rèn)真觀察數(shù)陣,可以求出和式的值為 。
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當(dāng)時,在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,
第二問中,,則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立
解:(1)當(dāng)時,在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,
…………4分
(2),則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立
在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.
(1)若抽獎規(guī)則是從一個裝有2個紅球和4個白球的袋中無放回地取出2個球,當(dāng)兩個球同色時則中獎,求中獎概率;
(2)若甲計劃在9:00~9:40之間趕到,乙計劃在9:20~10:00之間趕到,求甲比乙提前到達(dá)的概率.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com