則數(shù)列的前9項(xiàng)分別為1..2..4....8. 上述數(shù)列符合要求, 查看更多

 

題目列表(包括答案和解析)

設(shè)an=2n,bn=n,(n=1,2,3,。。。),An、Bn分別為數(shù)列{an}、{bn}的前n項(xiàng)和。記cn=anBn+bnAn―anbn,則數(shù)列{cn}的前10項(xiàng)和為

A.210+53                        B.2 11 +53

C.110×(2 9-1)                D.110×(2 10-1)

查看答案和解析>>

.設(shè)an=2n,bn=n,(n=1,2,3,。。。),An、Bn分別為數(shù)列{an}、{bn}的前n項(xiàng)和。記cn=anBn+bnAn―anbn,則數(shù)列{cn}的前10項(xiàng)和為

A.210+53                        B.2 11 +53

C.110×(2 9-1)                D.110×(2 10-1)

查看答案和解析>>

在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,21,28,…,這些數(shù)叫做三角形數(shù),其通項(xiàng)為
n(n+1)
2
,前n項(xiàng)和為sn=
n(n+1)(n+2)
6
,如下圖所示,有一列三角形數(shù)表,其位于三角形的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,依次記各三角形數(shù)表中的所有數(shù)之和為an,則a1=
0+2+6
4
=
2(1+3)
4
=2,a2=
0+3+9+18
9
=
3(1+3+6)
9
=
10
3
精英家教網(wǎng)
(1)求a3,a4,并寫出an的表達(dá)式;
(2)令bn=
an
an+1
+
an+1
an
,證明2n<b1+b2+b3+…+bn<2n+2(n∈N*).

查看答案和解析>>

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項(xiàng)目報(bào)名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報(bào)名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會(huì)圍棋.

(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:

 

會(huì)圍棋

不會(huì)圍棋

總計(jì)

 

 

 

 

 

 

總計(jì)

 

 

30

并回答能否在犯錯(cuò)的概率不超過0.10的前提下認(rèn)為性別與會(huì)圍棋有關(guān)?

參考公式:其中n=a+b+c+d

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

(Ⅱ)若從會(huì)圍棋的選手中隨機(jī)抽取3人成立該班圍棋代表隊(duì),則該代表隊(duì)中既有男又

有女的概率是多少?

(Ⅲ)若從14名女棋手中隨機(jī)抽取2人參加棋類比賽,記會(huì)圍棋的人數(shù)為,求的期望.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案