使得對任意.都有成立. 查看更多

 

題目列表(包括答案和解析)

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間(0,
π2
)
上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

(14分)已知函數(shù)滿足對任意,都有.   w w w.k s 5 u.c o m

(1)求實數(shù)的取值范圍;

(2)試討論函數(shù)在區(qū)間 上的零點的個數(shù);

(3)對于給定的實數(shù),有一個最小的負(fù)數(shù),使得時,都成立,則當(dāng)為何值時,最小,并求出的最小值.

查看答案和解析>>

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間數(shù)學(xué)公式上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

設(shè)數(shù)列的前項和為,若對任意,都有.

⑴求數(shù)列的首項;

⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;

⑶數(shù)列滿足,問是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說明理由.

 

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

 

二、填空題:本大題7小題,每小題4分,共28分.

11、;   12、 ;   13、;   14、;   15、;  16、 ;17、

 

三、解答題

18、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即,

 …………………………………………………………………(9分) 

 取中點,則平面,

就是與平面所成的角。   …………………………(11分)

,,

所以與平面所成的角的大小為。 …………………………(14分)

(用向量方法,相應(yīng)給分)

 

19、(1),,  …………(7分)

    (2),當(dāng)時,;當(dāng)時,

,而,

        ……………………………………………(14分)

 

20、(1)當(dāng),當(dāng)k=1時,

 ………………………………………  (7分) 

(2)由已知,又設(shè),則

,

知當(dāng)時,為增函數(shù),則知為增函數(shù)!14分)

(用導(dǎo)數(shù)法相應(yīng)給分)

21、.解:(1)、設(shè),則,

 ∵點P分所成的比為   ∴    ∴  

     代入中,得 為P點的軌跡方程.

當(dāng)時,軌跡是圓. …………………………………………………(7分)

(2)、由題設(shè)知直線l的方程為, 設(shè)

聯(lián)立方程組  ,消去得: 

∵ 方程組有兩解  ∴   ∴    

   ∵

      ∴    

 又 ∵    ∴    解得(舍去)或

∴ 曲線C的方程是  ……………………………………………(14分)

22、解(1)   ………………………………………………(5分) 

猜想    ,    …………………………………………………………(7分)

證明(略)  ……………………………………………………………………(10分)

  (2),要使恒成立,

恒成立  

恒成立.

(i)當(dāng)為奇數(shù)時,即恒成立, 又的最小值為1,  

(ii)當(dāng)為偶數(shù)時,即恒成立,  又的最大值為

         即,又為整數(shù),

 ∴,使得對任意,都有 …………………………………( 16分)

 

 


同步練習(xí)冊答案