22.某小組有6個同學(xué).其中4個同學(xué)從來沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動.2個同學(xué)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動. (1)現(xiàn)從該小組中任選2個同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動.求恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率, 查看更多

 

題目列表(包括答案和解析)

某小組共有8名同學(xué),其中男生6人,女生2人,現(xiàn)從中按性別分層隨機(jī)抽4個參加一項(xiàng)公益活動,則不同的抽取方法共有

[  ]

A.40種

B.70種

C.80種

D.240種

查看答案和解析>>

高三某班有甲、乙兩個學(xué)習(xí)小組,每組都有10名同學(xué),其中甲組有4名女同學(xué)和6名男同學(xué);乙組有6名女同學(xué)和4名男同學(xué).現(xiàn)采用分層抽樣分別從甲、乙兩組中各抽2名同學(xué)進(jìn)行學(xué)習(xí)情況調(diào)查.求:

(1)從甲組抽取的同學(xué)中恰有1名女同學(xué)的概率;

(2)抽取的4名同學(xué)中恰有2名男同學(xué)的概率.

查看答案和解析>>

高三某班有甲、乙兩個學(xué)習(xí)小組,每組都有10名同學(xué),其中甲組有4名女同學(xué);乙組有6名女同學(xué)。現(xiàn)采用分層抽樣從甲、乙兩組中共抽取4名同學(xué)進(jìn)行學(xué)習(xí)情況調(diào)查。

   (1)求從甲、乙兩組各抽取的人數(shù);

   (2)求從甲組抽取的同學(xué)中恰有1名女同學(xué)的概率;

   (3)求抽取的4名同學(xué)中恰有2名男同學(xué)的概率。

查看答案和解析>>

(2012•九江一模)某校高二年級興趣小組,為了分析2011年我國宏觀經(jīng)濟(jì)形勢,上網(wǎng)查閱了2010年和2011年1-10月我國GPI同比(即當(dāng)年某月與前一年同月相比)的增長數(shù)據(jù)(見下表),但今年4,5兩個月的數(shù)據(jù)(分別記為x,y)沒有查到.有的同學(xué)清楚記得今年3,4,5三個月的GPI數(shù)據(jù)的平均數(shù)是5.4,方差的3倍是0.02,且x<y.
附表:我國2010年和2011年前十月的GPI數(shù)據(jù)(單位:百分點(diǎn))
年份 一月 二月 三月 四月 五月 六月 七月 八月 九月 十月
2010 1.5 2.7 2.4 2.8 3.1 2.9 3.3 3.5 3.6 4.4
2011 4.9 4.9 5.4 x y 6.4 6.5 6.2 6.1 5.5
注:1個百分點(diǎn)=1%
(1)求x,y的值;
(2)一般認(rèn)為,某月GPI達(dá)到或超過3個百分點(diǎn)就已經(jīng)通貨膨脹,而達(dá)到或超過5個百分點(diǎn)則嚴(yán)重通貨膨脹.現(xiàn)隨機(jī)地從2010年的十個月和2011年的十個月的數(shù)據(jù)中各抽取一個數(shù)據(jù),求相同月份2010年通貨膨脹,并且2011年嚴(yán)重通貨膨脹的概率.
注:方差計(jì)算公式:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+L+(xn-
.
x
2)],其中:
.
x
=
x1+x2+Lxn
n

查看答案和解析>>

某小組有6個同學(xué),其中4個同學(xué)從來沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動,2個同學(xué)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動.
(1)現(xiàn)從該小組中任選2個同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動,求恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率;
(2)若從該小組中任選2個同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動,活動結(jié)束后,該小組沒有參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)個數(shù)ξ是一個隨機(jī)變量.求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

一:填空題

1、2;  2、x∈R,使x2+1<x;  3、π;  4、;  5、既不充分也不必要條件;

6、1+i;   7、;     8、5;     9、;    10、(-∞, -)∪(,+∞);

11、2或5;    12、9;  13、b1?b22?b33?…?bnn=;    14、;

二:解答題

15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)

∴(a?(b=cos(α-β) =cos=         …………………………………………5分

(2)∵………7分

α+β=2α-(α-β)= -(α-β)         ……………………………………9分

或7……………14分

16、證明:(1)令BC中點(diǎn)為N,BD中點(diǎn)為M,連結(jié)MN、EN

∵M(jìn)N是△ABC的中位線

∴   MN∥CD       …………………………2分

由條件知AE∥CD ∴MN∥AE 又MN=CD=AE 

∴四邊形AEMN為平行四邊形

∴AN∥EM …………………………4分

∵AN面BED, EM面BED

∴AN∥面BED……………………6分

(2)   ∵AE⊥面ABC, AN面ABC

∴AE⊥AN  又∵AE∥CD,AN∥EM∴EM⊥CD………………8分

∵N為BC中點(diǎn),AB=AC∴AN⊥BC

*∴EM⊥BC………………………………………………10分

∴EM⊥面BCD…………………………………………12分

∵EM面BED  ∴  面BED⊥面BCD  ……14分

17.解:(1)取弦的中點(diǎn)為M,連結(jié)OM

由平面幾何知識,OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………7分

(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

              ……………………………………10分

解得                       …………………………………………12分

……………………………15分

                  

18.(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=,  ∵S△APQ=,

    ∴…………………7分

(2)

          =?………………12分

    當(dāng),即……15分

19.解(1)證:       由  得

在C1上點(diǎn)處的切線為y-2e=2(x-e),即y=2x

又在C2上點(diǎn)處切線可計(jì)算得y-2e=2(x-e),即y=2x

∴直線l與C1、C2都相切,且切于同一點(diǎn)(e,2e)      …………………5分

(2)據(jù)題意:M(t, +e),N(t,2elnt),P(t,2t)

∵+e-2t=≥0,∴+e ≥2t

設(shè)h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;

當(dāng)t∈(0,e)時h/(t)<0,h(t)單調(diào)遞減;且當(dāng)t∈(e,+∞)時h/(t)>0,h(t)單調(diào)遞增;

∴t>0有h(t)≥h(e)=0  ∴2t≥2elnt

∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分

f(t)= +2e-4==≥0…………………7分

   ∴上遞增∴當(dāng)………10分

(3)

設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

當(dāng)時,,遞減;

當(dāng),遞增. ……………………………………12分

                 

    

∴不存在正整數(shù),使得              …………………16分

20.解:(1),

對一切恒成立

的最小值,又 ,………………4分

(2)這5個數(shù)中成等比且公比的三數(shù)只能為

只能是,

      …………………………8分

,,

,顯然成立             ……………………………………12分

當(dāng)時,,

∴使成立的自然數(shù)n恰有4個正整數(shù)的p值為3……16分

三:理科附加題

21. A.解:(1)

   ∴AB=CD                          …………………………4分

(2)由相交弦定理得2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因?yàn)?sub>

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.解:(1)記“恰好選到1個曾參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)”為事件的,

則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率為

(2)隨機(jī)變量

P(ξ=2)= =; P(ξ=3)= =;………7分

2

3

4

P

  ∴隨機(jī)變量的分布列為

                    ………………10分

23.(1),,

,………………3分

   (2)平面BDD1的一個法向量為,設(shè)平面BFC1的法向量為

得平面BFC1的一個法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

,當(dāng)時,當(dāng)時,∴   ……………10分

 

 

 

 


同步練習(xí)冊答案