題目列表(包括答案和解析)
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
| ||||||||||||
|
y |
| |||||||
|
. |
y |
. |
x |
yi |
為了解某校高三學(xué)生的視力狀況,隨機(jī)地抽查了該校100名高三學(xué)生的視力狀況,得到頻率分布直方圖,如下,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道后5組的頻率成等比數(shù)列,設(shè)視力在4.6到4.9之間的學(xué)生數(shù)為a,最大頻率為b,則a,b的值分別為
A.77 0.53
B.70 0.32
C.77 5.3
D.70 3.2
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)成績x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成績y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
| |||||||
|
. |
y |
. |
x |
. |
x |
. |
y |
8 |
i=1 |
. |
x |
8 |
i=1 |
. |
x |
. |
y |
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
? |
y |
| |||||||
|
. |
y |
. |
x |
? |
y |
. |
x |
. |
y |
8 |
i=1 |
. |
x |
8 |
i=1 |
. |
x |
. |
y |
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
y |
| |||||||
|
. |
y |
. |
x |
. |
x |
. |
y |
8 |
i=1 |
. |
x |
8 |
i=1 |
. |
x |
. |
y |
1050 |
457 |
550 |
一.1.B 2.B 3.A 4.B 5.A 6.D 7.C 8.A 9.A 10.C
二.11.5 12.36 13. 14.
15. 適合①②的不等式如:, 或其它曲線型只要適合即可
三.16.解: (1)
∴即AB邊的長度為2. …………… …………5分
(2)由已知及(1)有:
∴ ……………8分
由正弦定理得: ……………10分
∴= …………12分
17.解: ①依題意可設(shè) ………1分
則
對n=1,2,3,……都成立 ………3分
∴ 又解得
∴ ………6分
②∵ …………9分
∴+ ++…+
……12分
18.解:(Ⅰ)依題意,記“甲投一次命中”為事件A,“乙投一次命中”為事件B,
則 …………3分
∵“甲、乙兩人各投球一次,都沒有命中”的事件為
…………5分
(Ⅱ)∵甲、乙兩人在罰球線各投球二次時,
甲命中1次,乙命中0次的概率為 …………7分
甲命中2次,乙命中0次的概率為…………9分
甲命中2次,乙命中1次”的概率為…………11分
故甲、乙兩人在罰球線各投球兩次,甲投球命中的次數(shù)比乙投球命中的次數(shù)多的
概率為P= …………12分
19.解法1:取BE的中點(diǎn)O,連OC.
∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.
以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz如圖,
則由已知條件有:,,
, ……4分
設(shè)平面ADE的法向量為n=,
則由n?
及n?
可取n ……6分
又AB⊥平面BCE. ∴AB⊥OC.OC⊥平面ABE
∴平面ABE的法向量可取為m=.
∵n?m?=0,
∴n⊥m∴平面ADE⊥平面ABE. ……8分
⑵點(diǎn)C到平面ADE的距離為……12分
解法2:取BE的中點(diǎn)O,AE的中點(diǎn)F,連OC,OF,CD.則
∵AB⊥平面BCE,CD⊥平面BCE, AB=2CD
∴CD , CD∴∥ FD ……3分
∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.
∴OC⊥平面ABE. ∴FD⊥平面ABE.
從而平面ADE.⊥平面ABE. ……6分
②∵CD ,延長AD, BC交于T
則C為BT的中點(diǎn).
點(diǎn)C到平面ADE的距離等于點(diǎn)B到平面ADE的距離的.……8分
過B作BH⊥AE,垂足為H!咂矫鍭DE.⊥平面ABE!郆H⊥平面BDE.
由已知有AB⊥BE. BE=,AB= 2, ∴BH=,
從而點(diǎn)C到平面ADE的距離為 ……………… ……………12分
或∥ FD, 點(diǎn)C到平面ADE的距離等于點(diǎn)O到平面ADE的距離為.
或取A B的中點(diǎn)M。易證∥ DA。點(diǎn)C到平面ADE的距離等于點(diǎn)M到平面ADE的距離為.
20. 解: (I)設(shè)O為原點(diǎn),則=2,=2。
而=,得=,
于是O、P、Q三點(diǎn)共線。 ……………2分
因?yàn)?sub>所以PF∥QF/,且 ,……………3分
得,
∴∴ ……………5分
因此橢圓的離心率為雙曲線的離心率為 ……………7分
(II)設(shè)、,
點(diǎn)P在雙曲線的上,有。
則.
所以。 ①…………9分
又由點(diǎn)Q在橢圓上,有。
同理可得 ② ……………10分
∵O、P、Q三點(diǎn)共線!。
由①、②得。 ……………13分
21. 解:(I) ……………1分
由已知有:∴,∴ ……………3分
從而
令=0得:x1=1,x2=. ∵ ∴x2
當(dāng)x變化時,、f(x)的變化情況如下表:
x
+
-
+
增函數(shù)
減函數(shù)
增函數(shù)
從上表可知:在,上是增函數(shù);
在,上是減函數(shù) ……………6分
(II)∵m>0,∴m+1>1. 由(I)知:
①當(dāng)0<m<1時,. 則最小值為得: ……8分
此時.從而
∴最大值為得
此時適合. ……10分
②當(dāng)m1時, 在閉區(qū)間上是增函數(shù).
∴最小值為 ⑴
最大值為=0. ⑵………12分
由⑵得: ⑶
⑶代入⑴得:.即
又m1, ∴從而
∴此時的a,m不存在
綜上知: ,. ………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com