[答案]C [點(diǎn)撥:根據(jù)相似三角形的性質(zhì).可求得A端要向下壓50cm.也可利用物理學(xué)中的杠桿定律解題] 查看更多

 

題目列表(包括答案和解析)

知識(shí)背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價(jià)值的綠色食品.在當(dāng)?shù)厥袌?chǎng)出售時(shí),基地要求“楊梅”用雙層上蓋的長(zhǎng)方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實(shí)際運(yùn)用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長(zhǎng)的比是黃金比,取黃金比為0.6),體積為0.3立方米.

①按方案1(如圖)做一個(gè)紙箱,需要矩形硬紙板的面積是多少平方米?

②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個(gè)紙箱比方案1更優(yōu),你認(rèn)為呢?請(qǐng)說明理由.

 

(2)拓展思維:城西一家水果商打算在基地購(gòu)進(jìn)一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運(yùn)吃力,要求將紙箱的底面周長(zhǎng)、底面面積和高都設(shè)計(jì)為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請(qǐng)利用函數(shù)圖象驗(yàn)證.

【解析】(1)①利用寬與長(zhǎng)的比是黃金比,取黃金比為0.6,假設(shè)底面長(zhǎng)為x,寬就為0.6x,再利用圖形得出QM=+0.5+1+0.5+=3,F(xiàn)H=0.3+0.5+0.6+0.5+0.3=2.2,進(jìn)而求出即可;

②根據(jù)菱形的性質(zhì)得出,對(duì)角線乘積的一半絕對(duì)小于矩形邊長(zhǎng)乘積即可得出答案;

(2)根據(jù)相似三角形的性質(zhì)面積比等于相似比的平方得出即可

 

查看答案和解析>>

知識(shí)背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價(jià)值的綠色食品.在當(dāng)?shù)厥袌?chǎng)出售時(shí),基地要求“楊梅”用雙層上蓋的長(zhǎng)方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實(shí)際運(yùn)用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長(zhǎng)的比是黃金比,取黃金比為0.6),體積為0.3立方米.

①按方案1(如圖)做一個(gè)紙箱,需要矩形硬紙板的面積是多少平方米?

②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個(gè)紙箱比方案1更優(yōu),你認(rèn)為呢?請(qǐng)說明理由.

 

(2)拓展思維:城西一家水果商打算在基地購(gòu)進(jìn)一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運(yùn)吃力,要求將紙箱的底面周長(zhǎng)、底面面積和高都設(shè)計(jì)為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請(qǐng)利用函數(shù)圖象驗(yàn)證.

【解析】(1)①利用寬與長(zhǎng)的比是黃金比,取黃金比為0.6,假設(shè)底面長(zhǎng)為x,寬就為0.6x,再利用圖形得出QM=+0.5+1+0.5+=3,F(xiàn)H=0.3+0.5+0.6+0.5+0.3=2.2,進(jìn)而求出即可;

②根據(jù)菱形的性質(zhì)得出,對(duì)角線乘積的一半絕對(duì)小于矩形邊長(zhǎng)乘積即可得出答案;

(2)根據(jù)相似三角形的性質(zhì)面積比等于相似比的平方得出即可

 

查看答案和解析>>

   如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.

(1)填空:PD的長(zhǎng)為                (用含t的代數(shù)式表示);

(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);

(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說明理由;

(4)填空:在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為                             

【解析】此題考核相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)

 

查看答案和解析>>

   如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.

(1)填空:PD的長(zhǎng)為               (用含t的代數(shù)式表示);

(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);

(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說明理由;

(4)填空:在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為                            

【解析】此題考核相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)

 

查看答案和解析>>

在△ABC中,AB=AC,∠ACB =∠ABC,CG⊥BA交BA的延長(zhǎng)線于點(diǎn)G,一等腰三角板按如圖27-1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊

在一條直線上,另一條直角邊恰好經(jīng)過點(diǎn)B。

(1)在圖24-1中請(qǐng)你通過觀察,測(cè)量BF與CG的長(zhǎng)度,猜想并寫出BF與CG滿足的數(shù)量關(guān)系,然后說明你的猜想。

(2)當(dāng)三角尺沿AC方向平移到圖24-2所在的位置時(shí),一條直角邊仍與AC邊在同一直線上,另

一條直角邊交BC邊于點(diǎn)D,過點(diǎn)D作DE⊥BA于點(diǎn)E,此時(shí)請(qǐng)你通過觀察、測(cè)量DE、DF與CG的長(zhǎng)度,猜想并寫出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后說明你的猜想。

提示:過點(diǎn)D作DH⊥CG,可得四邊形EDHG是長(zhǎng)方形,而且∠HDC=∠ABC,ED=GH

(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖24-3所示的位置(點(diǎn)F在線段AC上,

且點(diǎn)F與點(diǎn)C不重合)時(shí),試猜想DE、DF與CG之間滿足的數(shù)量關(guān)系?(不用說明理由)

【解析】本題利用等腰直角三角形的性質(zhì)及全等三角形的判定和性質(zhì)求解

 

查看答案和解析>>


同步練習(xí)冊(cè)答案