19.袋中有形狀大小完全相同的8個小球.其中紅球5個.白球3個.某人逐個從袋中取球.第一次取出一個小球.記下顏色后放回袋中,第二次取出一個小球.記下顏色后.不放回袋中.第三次取出一個小球.記下顏色后.放回袋中.第四次取出一個小球.記下顏色后不放回袋中--.如此進行下去.直到摸完球為止.(1)求第四次恰好摸到紅球的概率,(2)記ξ為前三次摸到紅球的個數(shù).寫出其分布列.并求其期望Eξ. 查看更多

 

題目列表(包括答案和解析)

(本小題12分)袋中有形狀大小完全相同的8個小球,其中紅球5個,白球3個。某人逐個從袋中取球,第一次取出一個小球,記下顏色后放回袋中;第二次取出一個小球,記下顏色后,不放回袋中,第三次取出一個小球,記下顏色后,放回袋中,第四次取出一個小球,記下顏色后不放回袋中……,如此進行下去,直到摸完球為止。
(1)求第四次恰好摸到紅球的概率;
(2)記ξ為前三次摸到紅球的個數(shù),寫出其分布列,并求其期望Eξ。

查看答案和解析>>

(本小題滿分12分)一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(1)從袋中隨機抽取一個球,將其編號記為,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為.求關于的一元二次方程有實根的概率;

(2)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為.若以作為點P的坐標,求點P落在區(qū)域內(nèi)的概率.

 

查看答案和解析>>

(本小題滿分12分)一個袋中裝有四個形狀大小完全相同的球,球的編號分別為

(Ⅰ)從袋中隨機取出兩個球,求取出的球的編號之和不大于的概率;

(Ⅱ)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為,求的概率。

 

查看答案和解析>>

(本小題滿分12分)

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;

(Ⅱ)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求的概率.

 

查看答案和解析>>

(本小題滿分12分)甲乙兩人各有個材質(zhì)、大小、形狀完全相同的小球,甲的

小球上面標有五個數(shù)字,乙的小球上面標有五個數(shù)字.把各自的小球放

入兩個不透明的口袋中,兩人同時從各自的口袋中隨機摸出個小球.規(guī)定:若甲摸出的小

球上的數(shù)字是乙摸出的小球上的數(shù)字的整數(shù)倍,則甲獲勝,否則乙獲勝.

(1)寫出基本事件空間;

(2)你認為“規(guī)定”對甲、乙二人公平嗎?說出你的理由.

 

查看答案和解析>>

一、選擇題:

1.D  2.A 3  B  4.D 5.A 6.D 7.B 8.C 9.A  10.B  11.A  12.B

二、填空題:

13.12          14.    15   3          16.,①②③④    

三、解答題:

17.解:法(1):①∵=(1+cosB,sinB)與=(0,1)所成的角為

與向量=(1,0)所成的角為                                                   

,即                                                   (2分)

而B∈(0,π),∴,∴,∴B=。                               (4分)

②令AB=c,BC=a,AC=b

∵B=,∴b2=a2+c2-2accosB=a2+c2-ac=,∵a,c>0。             (6分)

∴a2+c2,ac≤     (當且僅當a=c時等號成立)

∴12=a2+c2-ac≥                                           (8分)

∴(a+c)2≤48,∴a+c≤,∴a+b+c≤+=(當且僅當a=c時取等號)

故ΔABC的周長的最大值為。                                                          (10分)

法2:(1)cos<>=cos

,                                                                                   (2分)

即2cos2B+cosB-1=0,∴cosB=或cosB=-1(舍),而B∈(0,π),∴B=     (4分)

(2)令AB=c,BC=a,AC=b,ΔABC的周長為,則=a+c+

而a=b?,c=b?                                      (2分)

==

=                                (8分)

∵A∈(0,),∴A-,

當且僅當A=時,。                                         (10分)

 18.解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

∴ΔADC為等邊三角形,且AC=1,取AC的中點O,則DO⊥AC,又PA⊥底面ABCD,

∴PA⊥DO,∴DO⊥平面PAC,過O作OH⊥PC,垂足為H,連DH

由三垂成定理知DH⊥PC,∴∠DHO為二面角D-PC-A的平面角

由OH=,DO=,∴tan∠DHO==2

∴二面角D-PC-A的大小的正切值為2。

(3)設點B到平面PCD的距離為d,又AB∥平面PCD

∴VA-PCD=VP-ACD,即

  即點B到平面PCD的距離為。

19.解:(1)第一和第三次取球?qū)Φ谒拇螣o影響,計第四次摸紅球為事件A

①第二次摸紅球,則第四次摸球時袋中有4紅球概率為

                                                                            (2分)

②第二次摸白球,則第四次摸球時袋中有5紅2白,摸紅球概率為

                                                                           (3分)

∴P(A)=,即第四次恰好摸到紅球的概率為。(6分)(注:無文字說明扣一分)

(2)由題設可知ξ的所有可能取值為:ξ=0,1,2,3。P(ξ=0)=;

P(ξ=1)=;P(ξ=2)=;

P(ξ=3)=。故隨機變量ξ的分布列為:

ξ

0

1

2

      1. <dfn id="z5m6a"><strike id="z5m6a"><th id="z5m6a"></th></strike></dfn>

        1. <s id="z5m6a"></s>
          <dl id="z5m6a"><legend id="z5m6a"></legend></dl>

            (10分)

            P

            ∴Eξ=(個),故Eξ=(個)                                    (1

            20.解:(1),

            故數(shù)列是首項為2,公比為2的等比數(shù)列。

            ,…………………………………………4分

            (2),

            ②―①得,即

            ④―③得,即

            所以數(shù)列是等差數(shù)列……………………9分

            (3)………………………………11分

            ,則

            …………13分

            21.解:(1)設,.

            整理得AB:bx-ay-ab=0與原點距離,又,

            聯(lián)立上式解得b=1,∴c=2,.∴雙曲線方程為.

            (2)設C(x1,y1),D(x2,y2)設CD中點M(x0,y0),

            ,∴|AC|=|AD|,∴AM⊥CD.

            聯(lián)立直線與雙曲線的方程得,整理得(1-3k2)x2-6kmx-3m2-3=0,且.

            ,    ,

            ,∴AM⊥CD.

            ,整理得,

            且k2>0,,代入中得.

            .

            22.解:(1)∵(x)=3ax2+sinθx-2

            由題設可知:∴sinθ=1。(2分)

            從而a=,∴f(x)=,而又由f(1)=得,c=

            ∴f(x)=即為所求。                                                     (4分)

            (2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均為增函數(shù),在(-2,1)上為減函數(shù)。

            (i)當m>1時,f(x)在[m,m+3]上遞增。故f(x)max=f(m+3),f(x)min=f(m)

            由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=3m2+12m+得-5≤m≤1。這與條件矛盾故舍。                                                                             (6分)

            (ii)當0≤m≤1時,f(x)在[m,1]上遞減,在[1,m+3]上遞增。

            ∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

            又f(m+3)-f(m)=3m2+12m+=3(m+2)2->0(0≤m≤1),∴f(x)max=f(m+3)

            ∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=恒成立

            故當0≤m≤1原式恒成立。                                                                       (8分)

            綜上:存在m且m∈[0,1]合乎題意。                                                   (9分)

            (3)∵a1∈(0,1,∴a2,故a2>2

            假設n=k(k≥2,k∈N*)時,ak>2。則ak+1=f(ak)>f(2)=8>2

            故對于一切n(n≥2,n∈N*)均有an>2成立。                                    (11分)

            令g(x)=

            =

            當x∈(0,2)時(x)<0,x∈(2,+∞)時,(x)>0,

            ∴g(x)在x∈[2,+∞時為增函數(shù)。

            而g(2)=8-8ln2>0,即當x∈[2,+∞時,g(x)≥g(2)>0恒成立。

            ∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

            而當n=1時,a2=8,而8lna1≤0,∴a2>8lna1顯然成立。

            綜上:對一切n∈N*均有an+1>8lnan成立。                             

             

             

             

             


            同步練習冊答案
            <dfn id="z5m6a"><strong id="z5m6a"></strong></dfn>